|
493 | 493 | @test nmpc6.L_Hp ≈ Diagonal(diagm(repeat(Float64[0, 1], 15))) |
494 | 494 | nmpc7 = NonLinMPC(nonlinmodel, Hp=15, Ewt=1e-3, JE=(UE,ŶE,D̂E,p) -> p*UE.*ŶE.*D̂E, p=2) |
495 | 495 | @test nmpc7.E == 1e-3 |
496 | | - @test nmpc7.JE([1,2],[3,4],[4,6],2) == 2*[1,2].*[3.4].*[4,6] |
| 496 | + @test nmpc7.JE([1,2],[3,4],[4,6],2) == 2*[1,2].*[3,4].*[4,6] |
497 | 497 | optim = JuMP.Model(optimizer_with_attributes(Ipopt.Optimizer, "nlp_scaling_max_gradient"=>1.0)) |
498 | 498 | nmpc8 = NonLinMPC(nonlinmodel, Hp=15, optim=optim) |
499 | 499 | @test solver_name(nmpc8.optim) == "Ipopt" |
|
537 | 537 | @test info[:Ŷ][end] ≈ r[1] atol=5e-2 |
538 | 538 | Hp = 1000 |
539 | 539 | R̂y = fill(r[1], Hp) |
540 | | - JE = (_ , ŶE, _ ) -> sum((ŶE[2:end] - R̂y).^2) |
541 | | - nmpc = NonLinMPC(linmodel, Mwt=[0], Nwt=[0], Cwt=Inf, Ewt=1, JE=JE, Hp=Hp, Hc=1) |
| 540 | + JE = (_ , ŶE, _ , R̂y) -> sum((ŶE[2:end] - R̂y).^2) |
| 541 | + nmpc = NonLinMPC(linmodel, Mwt=[0], Nwt=[0], Cwt=Inf, Ewt=1, JE=JE, p=R̂y, Hp=Hp, Hc=1) |
542 | 542 | preparestate!(nmpc, [10]) |
543 | 543 | u = moveinput!(nmpc) |
544 | 544 | @test u ≈ [1] atol=5e-2 |
|
0 commit comments