@@ -3,37 +3,39 @@ $TYPEDEF
33
44Abstract type interface for a benchmark problem.
55
6- The following methods exist for benchmarks:
6+ The following methods are mandatory for benchmarks:
77- [`generate_dataset`](@ref)
88- [`generate_statistical_model`](@ref)
99- [`generate_maximizer`](@ref)
10+
11+ The following methods are optional:
1012- [`plot_data`](@ref)
1113- [`objective_value`](@ref)
1214- [`compute_gap`](@ref)
1315"""
1416abstract type AbstractBenchmark end
1517
1618"""
17- generate_dataset(::AbstractBenchmark, dataset_size::Int) -> Vector{<:DataSample}
19+ generate_dataset(::AbstractBenchmark, dataset_size::Int; kwargs... ) -> Vector{<:DataSample}
1820
1921Generate a `Vector` of [`DataSample`](@ref) of length `dataset_size` for given benchmark.
2022Content of the dataset can be visualized using [`plot_data`](@ref), when it applies.
2123"""
2224function generate_dataset end
2325
2426"""
25- generate_maximizer(::AbstractBenchmark)
27+ generate_maximizer(::AbstractBenchmark; kwargs... )
2628
2729Generates a maximizer function.
2830Returns a callable f: (θ; kwargs...) -> y, where θ is a cost array and y is a solution.
2931"""
3032function generate_maximizer end
3133
3234"""
33- generate_statistical_model(::AbstractBenchmark)
35+ generate_statistical_model(::AbstractBenchmark; kwargs... )
3436
3537Initializes and return an untrained statistical model of the CO-ML pipeline.
36- It's usually a Flux model, that takes a feature matrix x as iinput , and returns a cost array θ as output.
38+ It's usually a Flux model, that takes a feature matrix x as input , and returns a cost array θ as output.
3739"""
3840function generate_statistical_model end
3941
0 commit comments