@@ -56,7 +56,7 @@ derivative/setup expressions.
56
56
This macro assumes complex functions are holomorphic. In general, for non-holomorphic
57
57
functions, the `frule` and `rrule` must be defined manually.
58
58
59
- If the derivative is one, (e.g. for identity functions) `true` can be used as the most
59
+ If the derivative is one, (e.g. for identity functions) `true` can be used as the most
60
60
general multiplicative identity.
61
61
62
62
The `@setup` argument can be elided if no setup code is need. In other
@@ -249,11 +249,11 @@ function propagation_expr(Δs, ∂s, _conj=false, proj=identity)
249
249
summed_∂_mul_Δs = if n∂s > 1
250
250
# Explicit multiplication is only performed for the first pair
251
251
# of partial and gradient.
252
- init_expr = :(( * ) . ($ (_∂s[1 ]), $ (Δs[1 ])))
252
+ init_expr = :(* ($ (_∂s[1 ]), $ (Δs[1 ])))
253
253
254
254
# Apply `muladd` iteratively.
255
255
foldl (Iterators. drop (zip (_∂s, Δs), 1 ); init= init_expr) do ex, (∂s_i, Δs_i)
256
- :(( muladd) . ($ ∂s_i, $ Δs_i, $ ex))
256
+ :(muladd ($ ∂s_i, $ Δs_i, $ ex))
257
257
end
258
258
else
259
259
# Note: we don't want to do broadcasting with only 1 multiply (no `+`),
0 commit comments