|
1 | 1 | module DiffTests |
2 | 2 |
|
3 | | -# package code goes here |
| 3 | +#= |
| 4 | +These functions are organized in sets based on input/output type. They are unary and not |
| 5 | +in-place unless otherwised specified. These functions have been written with the following |
| 6 | +assumptions: |
| 7 | +
|
| 8 | +- Array input is of length >= 5 |
| 9 | +- Matrix input is square |
| 10 | +- Matrix inputs for n-ary functions are of equal shape |
| 11 | +
|
| 12 | +Some of these functions have been modified from their original form to to allow for tunable |
| 13 | +input/output sizes, or to test certain programmatic behaviors. Thus, regardless of their |
| 14 | +names, one should not expect these functions to be "correct" for their original purpose. |
| 15 | +=# |
| 16 | + |
| 17 | +######################## |
| 18 | +# f(x::Number)::Number # |
| 19 | +######################## |
| 20 | + |
| 21 | +num2num_1(x) = sin(x)^2 / cos(x)^2 |
| 22 | +num2num_2(x) = 2*x + sqrt(x*x*x) |
| 23 | +num2num_3(x) = 10.31^(x + x) - x |
| 24 | +num2num_4(x) = 1 |
| 25 | +num2num_5(x) = 1. / (1. + exp(-x)) |
| 26 | + |
| 27 | +const NUMBER_TO_NUMBER_FUNCS = (num2num_1, num2num_2, num2num_3, |
| 28 | + num2num_4, num2num_5, identity) |
| 29 | + |
| 30 | +####################### |
| 31 | +# f(x::Number)::Array # |
| 32 | +####################### |
| 33 | + |
| 34 | +function num2arr_1(x) |
| 35 | + return reshape([num2num_1(x), |
| 36 | + num2num_2(x), |
| 37 | + num2num_3(x), |
| 38 | + num2num_1(x) - num2num_2(x), |
| 39 | + num2num_2(x), |
| 40 | + num2num_3(x), |
| 41 | + num2num_2(x), |
| 42 | + num2num_3(x)], 2, 2, 2) |
| 43 | +end |
| 44 | + |
| 45 | +const NUMBER_TO_ARRAY_FUNCS = (num2arr_1,) |
| 46 | + |
| 47 | +################################# |
| 48 | +# f!(y::Array, x::Number)::Void # |
| 49 | +################################# |
| 50 | + |
| 51 | +function num2arr_1!(y, x) |
| 52 | + fill!(y, zero(x)) |
| 53 | + for i in 2:length(y) |
| 54 | + y[i] = (sin(x) + y[i-1])^2 |
| 55 | + end |
| 56 | + return nothing |
| 57 | +end |
| 58 | + |
| 59 | +const INPLACE_NUMBER_TO_ARRAY_FUNCS = (num2arr_1!,) |
| 60 | + |
| 61 | +######################## |
| 62 | +# f(x::Vector)::Number # |
| 63 | +######################## |
| 64 | + |
| 65 | +vec2num_1(x) = (exp(x[1]) + log(x[3]) * x[4]) / x[5] |
| 66 | +vec2num_2(x) = x[1]*x[2] + sin(x[1]) |
| 67 | +vec2num_3(x) = vecnorm(x' .* x) |
| 68 | +vec2num_4(x) = ((sum(x) + prod(x)); 1) |
| 69 | +vec2num_5(x) = sum((-x).^3) |
| 70 | +vec2num_6(x) = sum([ifelse(i > 0, i, 0) for i in x]) |
| 71 | + |
| 72 | +function rosenbrock_1(x) |
| 73 | + a = one(eltype(x)) |
| 74 | + b = 100 * a |
| 75 | + result = zero(eltype(x)) |
| 76 | + for i in 1:length(x)-1 |
| 77 | + result += (a - x[i])^2 + b*(x[i+1] - x[i]^2)^2 |
| 78 | + end |
| 79 | + return result |
| 80 | +end |
| 81 | + |
| 82 | +function rosenbrock_2(x) |
| 83 | + a = x[1] |
| 84 | + b = 100 * a |
| 85 | + v = map((i, j) -> (a - j)^2 + b*(i - j^2)^2, x[2:end], x[1:end-1]) |
| 86 | + return sum(v) |
| 87 | +end |
| 88 | + |
| 89 | +rosenbrock_3(x) = sum(map((i, j) -> (1 - j)^2 + 100*(i - j^2)^2, x[2:end], x[1:end-1])) |
| 90 | + |
| 91 | +function rosenbrock_4(x) |
| 92 | + t1 = (1 + x[1:end-1]).^2 |
| 93 | + t2 = x[2:end] + (x[1:end-1]).^2 |
| 94 | + return sum(t1 + 100 * (abs.(t2)).^2) |
| 95 | +end |
| 96 | + |
| 97 | +function ackley(x) |
| 98 | + a, b, c = 20.0, -0.2, 2.0*π |
| 99 | + len_recip = inv(length(x)) |
| 100 | + sum_sqrs = zero(eltype(x)) |
| 101 | + sum_cos = sum_sqrs |
| 102 | + for i in x |
| 103 | + sum_cos += cos(c*i) |
| 104 | + sum_sqrs += i^2 |
| 105 | + end |
| 106 | + return (-a * exp(b * sqrt(len_recip*sum_sqrs)) - |
| 107 | + exp(len_recip*sum_cos) + a + e) |
| 108 | +end |
| 109 | + |
| 110 | +self_weighted_logit(x) = inv(1.0 + exp(-dot(x, x))) |
| 111 | + |
| 112 | +const VECTOR_TO_NUMBER_FUNCS = (vec2num_1, vec2num_2, vec2num_3, vec2num_4, vec2num_5, |
| 113 | + vec2num_6, rosenbrock_1, rosenbrock_2, rosenbrock_3, |
| 114 | + rosenbrock_4, ackley, self_weighted_logit, first) |
| 115 | + |
| 116 | +######################## |
| 117 | +# f(x::Matrix)::Number # |
| 118 | +######################## |
| 119 | + |
| 120 | +mat2num_1(x) = det(first(x) * inv(x * x) + x) |
| 121 | + |
| 122 | +function mat2num_2(x) |
| 123 | + a = reshape(x, length(x), 1) |
| 124 | + b = reshape(copy(x), 1, length(x)) |
| 125 | + return trace(log.((1 .+ (a * b)) .+ a .- b)) |
| 126 | +end |
| 127 | + |
| 128 | +function mat2num_3(x) |
| 129 | + k = length(x) |
| 130 | + N = isqrt(k) |
| 131 | + A = reshape(x, N, N) |
| 132 | + return sum(map(n -> sqrt(abs(n) + n^2) * 0.5, A)) |
| 133 | +end |
| 134 | + |
| 135 | +mat2num_4(x) = mean(sum(sin.(x) * x, 2)) |
| 136 | + |
| 137 | +softmax(x) = sum(exp.(x) ./ sum(exp.(x), 2)) |
| 138 | + |
| 139 | +const MATRIX_TO_NUMBER_FUNCS = (det, mat2num_1, mat2num_2, mat2num_3, mat2num_4, softmax) |
| 140 | + |
| 141 | +#################### |
| 142 | +# binary broadcast # |
| 143 | +#################### |
| 144 | + |
| 145 | +if VERSION >= v"0.6.0-dev.1614" |
| 146 | + const BINARY_BROADCAST_OPS = ((a, b) -> broadcast(+, a, b), |
| 147 | + (a, b) -> broadcast(-, a, b), |
| 148 | + (a, b) -> broadcast(*, a, b), |
| 149 | + (a, b) -> broadcast(/, a, b), |
| 150 | + (a, b) -> broadcast(\, a, b), |
| 151 | + (a, b) -> broadcast(^, a, b)) |
| 152 | +else |
| 153 | + const BINARY_BROADCAST_OPS = (.+, .-, .*, ./, .\, .^) |
| 154 | +end |
| 155 | + |
| 156 | +################################# |
| 157 | +# f(::Matrix, ::Matrix)::Number # |
| 158 | +################################# |
| 159 | + |
| 160 | +const BINARY_MATRIX_TO_MATRIX_FUNCS = (+, -, *, /, \, |
| 161 | + BINARY_BROADCAST_OPS..., |
| 162 | + A_mul_Bt, At_mul_B, At_mul_Bt, |
| 163 | + A_mul_Bc, Ac_mul_B, Ac_mul_Bc) |
| 164 | + |
| 165 | +########################################### |
| 166 | +# f(::Matrix, ::Matrix, ::Matrix)::Number # |
| 167 | +########################################### |
| 168 | + |
| 169 | +relu(x) = log.(1.0 .+ exp.(x)) |
| 170 | +sigmoid(n) = 1. / (1. + exp.(-n)) |
| 171 | +neural_step(x1, w1, w2) = sigmoid(dot(w2[1:size(w1, 2)], relu(w1 * x1[1:size(w1, 2)]))) |
| 172 | + |
| 173 | +const TERNARY_MATRIX_TO_NUMBER_FUNCS = (neural_step,) |
| 174 | + |
| 175 | +################################ |
| 176 | +# f!(y::Array, x::Array)::Void # |
| 177 | +################################ |
| 178 | +# Credit for `chebyquad!`, `brown_almost_linear!`, and `trigonometric!` goes to |
| 179 | +# Kristoffer Carlsson (@KristofferC). |
| 180 | + |
| 181 | +function chebyquad!(y, x) |
| 182 | + tk = 1/length(x) |
| 183 | + for j = 1:length(x) |
| 184 | + temp1 = 1.0 |
| 185 | + temp2 = 2x[j]-1 |
| 186 | + temp = 2temp2 |
| 187 | + for i = 1:length(y) |
| 188 | + y[i] += temp2 |
| 189 | + ti = temp*temp2 - temp1 |
| 190 | + temp1 = temp2 |
| 191 | + temp2 = ti |
| 192 | + end |
| 193 | + end |
| 194 | + iev = -1.0 |
| 195 | + for k = 1:length(y) |
| 196 | + y[k] *= tk |
| 197 | + if iev > 0 |
| 198 | + y[k] += 1/(k^2-1) |
| 199 | + end |
| 200 | + iev = -iev |
| 201 | + end |
| 202 | + return nothing |
| 203 | +end |
| 204 | + |
| 205 | +function brown_almost_linear!(y, x) |
| 206 | + c = sum(x) - (length(x) + 1) |
| 207 | + for i = 1:(length(x)-1), j = 1:(length(y)-1) |
| 208 | + y[j] += x[i] + c |
| 209 | + end |
| 210 | + y[length(y)] = prod(x) - 1 |
| 211 | + return nothing |
| 212 | +end |
| 213 | + |
| 214 | +function trigonometric!(y, x) |
| 215 | + for i in x |
| 216 | + for j in eachindex(y) |
| 217 | + y[j] = cos(i) |
| 218 | + end |
| 219 | + end |
| 220 | + c = sum(y) |
| 221 | + n = length(x) |
| 222 | + for i in x |
| 223 | + for j in eachindex(y) |
| 224 | + y[j] = sin(i) * y[j] + n - c |
| 225 | + end |
| 226 | + end |
| 227 | + return nothing |
| 228 | +end |
| 229 | + |
| 230 | +function mutation_test_1!(y, x) |
| 231 | + y[1] = x[1] |
| 232 | + y[1] = y[1] * x[2] |
| 233 | + y[2] = y[2] * x[3] |
| 234 | + y[3] = sum(y) |
| 235 | + return nothing |
| 236 | +end |
| 237 | + |
| 238 | +function mutation_test_2!(y, x) |
| 239 | + y[1] *= x[1] |
| 240 | + y[2] *= x[1] |
| 241 | + y[1] *= x[2] |
| 242 | + y[2] *= x[2] |
| 243 | + return nothing |
| 244 | +end |
| 245 | + |
| 246 | +const INPLACE_ARRAY_TO_ARRAY_FUNCS = (chebyquad!, brown_almost_linear!, trigonometric!, |
| 247 | + mutation_test_1!, mutation_test_2!) |
| 248 | + |
| 249 | +###################### |
| 250 | +# f(x::Array)::Array # |
| 251 | +###################### |
| 252 | + |
| 253 | +chebyquad(x) = (y = zeros(x); chebyquad!(y, x); return y) |
| 254 | + |
| 255 | +brown_almost_linear(x) = (y = zeros(x); brown_almost_linear!(y, x); return y) |
| 256 | + |
| 257 | +trigonometric(x) = (y = ones(x); trigonometric!(y, x); return y) |
| 258 | + |
| 259 | +mutation_test_1(x) = (y = zeros(x); mutation_test_1!(y, x); return y) |
| 260 | + |
| 261 | +mutation_test_2(x) = (y = ones(x); mutation_test_2!(y, x); return y) |
| 262 | + |
| 263 | +arr2arr_1(x) = (sum(x .* x); zeros(x)) |
| 264 | + |
| 265 | +arr2arr_2(x) = x[1, :] .+ x[1, :] .+ first(x) |
| 266 | + |
| 267 | +const ARRAY_TO_ARRAY_FUNCS = (-, chebyquad, brown_almost_linear, trigonometric, arr2arr_1, |
| 268 | + arr2arr_2, mutation_test_1, mutation_test_2, identity) |
| 269 | + |
| 270 | +####################### |
| 271 | +# f(::Matrix)::Matrix # |
| 272 | +####################### |
| 273 | + |
| 274 | +const MATRIX_TO_MATRIX_FUNCS = (inv,) |
4 | 275 |
|
5 | 276 | end # module |
0 commit comments