@@ -116,7 +116,7 @@ \section{Optical Constructions}
116116on the representative - see Riley for details).
117117\end {definition }
118118
119- This definition makes maniffest the combination of co- and contravariant data.
119+ This definition makes manifest the combination of co- and contravariant data.
120120For a representative $ \langle l | r \rangle $ , $ l$ varies covariantly while $ r$
121121varies contravariantly. We additionally have a `` memory" or `` residual" object $ M$ .
122122This object is not uniquely determined and in fact we shall make good use of that
@@ -564,13 +564,13 @@ \subsubsection{Coproduct Structure}
564564Given our utter disappointment with the product structure, can we have any
565565hope to lift the co-product structure. Yes, we do! First we construct the
566566co-product itself. For two optics $ \langle l_1 | r_1 \rangle : (A, A') \to (B, B')$
567- with residual $ M_1 $ and $ \langle l_2 | r_2 \rangle : (C, D ') \to (D, D')$ with residual $ M_2 $ ,
567+ with residual $ M_1 $ and $ \langle l_2 | r_2 \rangle : (C, C ') \to (D, D')$ with residual $ M_2 $ ,
568568we construct a new optic $ \langle l_{12} | r_{12} \rangle $ where
569569
570570\begin {equation }
571571\begin {split }
572- l_{12} = (l_1 \oplus l_2) \bbsemi \leftrightarrow _{oplus} \\
573- r_{12} = \leftrightarrow _{oplus}^{-1} \bbsemi (r_1 \oplus r_2)
572+ l_{12} = (l_1 \oplus l_2) \bbsemi \leftrightarrow _{\ oplus } \\
573+ r_{12} = \leftrightarrow _{\ oplus }^{-1} \bbsemi (r_1 \oplus r_2)
574574\end {split }
575575\end {equation }
576576
@@ -881,9 +881,9 @@ \subsubsection{Copy}
881881\end {snippet }
882882
883883However, note that while this is a valid definition under our definition of
884- an optic functor, applying $ textbf{\euro {}}$ now leads to accumulation order
884+ an optic functor, applying $ \ textbf {\euro {}}$ now leads to accumulation order
885885dependence (the same happens in the variant where cloning is done once per value).
886- As a result, $ textbf{\euro {}}$ would no longer preserve standard SSA invariants.
886+ As a result, $ \ textbf {\euro {}}$ would no longer preserve standard SSA invariants.
887887This is legal according to our definition, but it can be convenient to be able to
888888arbitrarily permute SSA transforms and optic functors. Thus, we would generally
889889only ever choose one of the first two definitions.
0 commit comments