@@ -13,18 +13,18 @@ const bwd = Diffractor.PrimeDerivativeBack
13
13
14
14
15
15
# Regression tests
16
- @test gradient (x -> sum (abs2, x .+ 1.0 ), zeros (3 ))[1 ] == [2.0 , 2.0 , 2.0 ] broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
16
+ @test gradient (x -> sum (abs2, x .+ 1.0 ), zeros (3 ))[1 ] == [2.0 , 2.0 , 2.0 ]
17
17
18
18
function f_broadcast (a)
19
19
l = a / 2.0 * [[0. 1. 1. ]; [1. 0. 1. ]; [1. 1. 0. ]]
20
20
return sum (l)
21
21
end
22
- @test fwd (f_broadcast)(1.0 ) == bwd (f_broadcast)(1.0 ) broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
22
+ @test fwd (f_broadcast)(1.0 ) == bwd (f_broadcast)(1.0 )
23
23
24
24
# Make sure that there's no infinite recursion in kwarg calls
25
25
g_kw (;x= 1.0 ) = sin (x)
26
26
f_kw (x) = g_kw (;x)
27
- @test bwd (f_kw)(1.0 ) == bwd (sin)(1.0 ) broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
27
+ @test bwd (f_kw)(1.0 ) == bwd (sin)(1.0 )
28
28
29
29
function f_crit_edge (a, b, c, x)
30
30
# A function with two critical edges. This used to trigger an issue where
@@ -43,98 +43,98 @@ function f_crit_edge(a, b, c, x)
43
43
44
44
return y
45
45
end
46
- @test bwd (x-> f_crit_edge (false , false , false , x))(1.0 ) == 1.0 broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
47
- @test bwd (x-> f_crit_edge (true , true , false , x))(1.0 ) == 2.0 broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
48
- @test bwd (x-> f_crit_edge (false , true , true , x))(1.0 ) == 12.0 broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
49
- @test bwd (x-> f_crit_edge (false , false , true , x))(1.0 ) == 4.0 broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
46
+ @test bwd (x-> f_crit_edge (false , false , false , x))(1.0 ) == 1.0
47
+ @test bwd (x-> f_crit_edge (true , true , false , x))(1.0 ) == 2.0
48
+ @test bwd (x-> f_crit_edge (false , true , true , x))(1.0 ) == 12.0
49
+ @test bwd (x-> f_crit_edge (false , false , true , x))(1.0 ) == 4.0
50
50
51
51
# Issue #27 - Mixup in lifting of getfield
52
52
let var"'" = bwd
53
- @test (x-> x^ 5 )'' (1.0 ) == 20. broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
53
+ @test (x-> x^ 5 )'' (1.0 ) == 20.
54
54
@test_broken (x-> x^ 5 )''' (1.0 ) == 60.
55
55
end
56
56
57
57
# Issue #38 - Splatting arrays
58
- @test gradient (x -> max (x... ), (1 ,2 ,3 ))[1 ] == (0.0 , 0.0 , 1.0 ) broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
59
- @test gradient (x -> max (x... ), [1 ,2 ,3 ])[1 ] == [0.0 , 0.0 , 1.0 ] broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
58
+ @test gradient (x -> max (x... ), (1 ,2 ,3 ))[1 ] == (0.0 , 0.0 , 1.0 )
59
+ @test gradient (x -> max (x... ), [1 ,2 ,3 ])[1 ] == [0.0 , 0.0 , 1.0 ]
60
60
61
61
# Issue #40 - Symbol type parameters not properly quoted
62
- @test Diffractor.∂⃖recurse {1} ()(Val{:transformations })[1 ] === Val {:transformations} () broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
62
+ @test Diffractor.∂⃖recurse {1} ()(Val{:transformations })[1 ] === Val {:transformations} ()
63
63
64
64
# PR #43
65
65
loss (res, z, w) = sum (res. U * Diagonal (res. S) * res. V) + sum (res. S .* w)
66
66
x43 = rand (10 , 10 )
67
- @test Diffractor. gradient (x-> loss (svd (x), x[:,1 ], x[:,2 ]), x43) isa Tuple{Matrix{Float64}} broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
67
+ @test Diffractor. gradient (x-> loss (svd (x), x[:,1 ], x[:,2 ]), x43) isa Tuple{Matrix{Float64}}
68
68
69
69
# PR # 45 - Calling back into AD from ChainRules
70
- @test_broken y45, back45 = rrule_via_ad (DiffractorRuleConfig (), x -> log (exp (x)), 2 ) # https://github.com/JuliaDiff/Diffractor.jl/issues/170
71
- @test_broken y45 ≈ 2.0 broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
72
- @test_broken back45 (1 ) == (ZeroTangent (), 1.0 ) broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
70
+ y45, back45 = rrule_via_ad (DiffractorRuleConfig (), x -> log (exp (x)), 2 )
71
+ @test y45 ≈ 2.0
72
+ @test back45 (1 ) == (ZeroTangent (), 1.0 )
73
73
74
74
z45, delta45 = frule_via_ad (DiffractorRuleConfig (), (0 ,1 ), x -> log (exp (x)), 2 )
75
75
@test z45 ≈ 2.0
76
76
@test delta45 ≈ 1.0
77
77
78
78
# PR #82 - getindex on non-numeric arrays
79
- @test gradient (ls -> ls[1 ](1. ), [Base. Fix1 (* , 1. )])[1 ][1 ] isa Tangent{<: Base.Fix1 } broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
79
+ @test gradient (ls -> ls[1 ](1. ), [Base. Fix1 (* , 1. )])[1 ][1 ] isa Tangent{<: Base.Fix1 }
80
80
81
81
@testset " broadcast" begin
82
82
# derivatives_given_output
83
- @test gradient (x -> sum (x ./ x), [1 ,2 ,3 ]) == ([0 ,0 ,0 ],) broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
84
- @test gradient (x -> sum (sqrt .(atan .(x, transpose (x)))), [1 ,2 ,3 ])[1 ] ≈ [0.2338 , - 0.0177 , - 0.0661 ] atol= 1e-3 broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
85
- @test gradient (x -> sum (exp .(log .(x))), [1 ,2 ,3 ]) == ([1 ,1 ,1 ],) broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
83
+ @test gradient (x -> sum (x ./ x), [1 ,2 ,3 ]) == ([0 ,0 ,0 ],)
84
+ @test gradient (x -> sum (sqrt .(atan .(x, transpose (x)))), [1 ,2 ,3 ])[1 ] ≈ [0.2338 , - 0.0177 , - 0.0661 ] atol= 1e-3
85
+ @test gradient (x -> sum (exp .(log .(x))), [1 ,2 ,3 ]) == ([1 ,1 ,1 ],)
86
86
87
87
# frule_via_ad
88
- @test gradient (x -> sum ((exp∘ log). (x)), [1 ,2 ,3 ]) == ([1 ,1 ,1 ],) broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
88
+ @test gradient (x -> sum ((exp∘ log). (x)), [1 ,2 ,3 ]) == ([1 ,1 ,1 ],)
89
89
exp_log (x) = exp (log (x))
90
- @test gradient (x -> sum (exp_log .(x)), [1 ,2 ,3 ]) == ([1 ,1 ,1 ],) broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
91
- @test gradient ((x,y) -> sum (x ./ y), [1 2 ; 3 4 ], [1 ,2 ]) == ([1 1 ; 0.5 0.5 ], [- 3 , - 1.75 ]) broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
92
- @test gradient ((x,y) -> sum (x ./ y), [1 2 ; 3 4 ], 5 ) == ([0.2 0.2 ; 0.2 0.2 ], - 0.4 ) broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
90
+ @test gradient (x -> sum (exp_log .(x)), [1 ,2 ,3 ]) == ([1 ,1 ,1 ],)
91
+ @test gradient ((x,y) -> sum (x ./ y), [1 2 ; 3 4 ], [1 ,2 ]) == ([1 1 ; 0.5 0.5 ], [- 3 , - 1.75 ])
92
+ @test gradient ((x,y) -> sum (x ./ y), [1 2 ; 3 4 ], 5 ) == ([0.2 0.2 ; 0.2 0.2 ], - 0.4 )
93
93
# closure:
94
- @test gradient (x -> sum ((y -> y/ x). ([1 ,2 ,3 ])), 4 ) == (- 0.375 ,) broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
94
+ @test gradient (x -> sum ((y -> y/ x). ([1 ,2 ,3 ])), 4 ) == (- 0.375 ,)
95
95
96
96
# array of arrays
97
- @test gradient (x -> sum (sum, (x,) ./ x), [1 ,2 ,3 ])[1 ] ≈ [- 4.1666 , 0.3333 , 1.1666 ] atol= 1e-3 broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
98
- @test gradient (x -> sum (sum, Ref (x) ./ x), [1 ,2 ,3 ])[1 ] ≈ [- 4.1666 , 0.3333 , 1.1666 ] atol= 1e-3 broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
99
- @test gradient (x -> sum (sum, (x,) ./ x), [1 ,2 ,3 ])[1 ] ≈ [- 4.1666 , 0.3333 , 1.1666 ] atol= 1e-3 broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
97
+ @test gradient (x -> sum (sum, (x,) ./ x), [1 ,2 ,3 ])[1 ] ≈ [- 4.1666 , 0.3333 , 1.1666 ] atol= 1e-3
98
+ @test gradient (x -> sum (sum, Ref (x) ./ x), [1 ,2 ,3 ])[1 ] ≈ [- 4.1666 , 0.3333 , 1.1666 ] atol= 1e-3
99
+ @test gradient (x -> sum (sum, (x,) ./ x), [1 ,2 ,3 ])[1 ] ≈ [- 4.1666 , 0.3333 , 1.1666 ] atol= 1e-3
100
100
# must not take fast path
101
- @test gradient (x -> sum (sum, (x,) .* transpose (x)), [1 ,2 ,3 ])[1 ] ≈ [12 , 12 , 12 ] broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
101
+ @test gradient (x -> sum (sum, (x,) .* transpose (x)), [1 ,2 ,3 ])[1 ] ≈ [12 , 12 , 12 ]
102
102
103
- @test gradient (x -> sum (x ./ 4 ), [1 ,2 ,3 ]) == ([0.25 , 0.25 , 0.25 ],) broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
103
+ @test gradient (x -> sum (x ./ 4 ), [1 ,2 ,3 ]) == ([0.25 , 0.25 , 0.25 ],)
104
104
# x/y rule
105
- @test gradient (x -> sum ([1 ,2 ,3 ] ./ x), 4 ) == (- 0.375 ,) broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
105
+ @test gradient (x -> sum ([1 ,2 ,3 ] ./ x), 4 ) == (- 0.375 ,)
106
106
# x.^2 rule
107
- @test gradient (x -> sum (x.^ 2 ), [1 ,2 ,3 ]) == ([2.0 , 4.0 , 6.0 ],) broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
107
+ @test gradient (x -> sum (x.^ 2 ), [1 ,2 ,3 ]) == ([2.0 , 4.0 , 6.0 ],)
108
108
# scalar^2 rule
109
- @test gradient (x -> sum ([1 ,2 ,3 ] ./ x.^ 2 ), 4 ) == (- 0.1875 ,) broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
109
+ @test gradient (x -> sum ([1 ,2 ,3 ] ./ x.^ 2 ), 4 ) == (- 0.1875 ,)
110
110
111
- @test gradient (x -> sum ((1 ,2 ,3 ) .- x), (1 ,2 ,3 )) == (Tangent {Tuple{Int,Int,Int}} (- 1.0 , - 1.0 , - 1.0 ),) broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
112
- @test gradient (x -> sum (transpose ([1 ,2 ,3 ]) .- x), (1 ,2 ,3 )) == (Tangent {Tuple{Int,Int,Int}} (- 3.0 , - 3.0 , - 3.0 ),) broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
113
- @test gradient (x -> sum ([1 2 3 ] .+ x .^ 2 ), (1 ,2 ,3 )) == (Tangent {Tuple{Int,Int,Int}} (6.0 , 12.0 , 18.0 ),) broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
111
+ @test gradient (x -> sum ((1 ,2 ,3 ) .- x), (1 ,2 ,3 )) == (Tangent {Tuple{Int,Int,Int}} (- 1.0 , - 1.0 , - 1.0 ),)
112
+ @test gradient (x -> sum (transpose ([1 ,2 ,3 ]) .- x), (1 ,2 ,3 )) == (Tangent {Tuple{Int,Int,Int}} (- 3.0 , - 3.0 , - 3.0 ),)
113
+ @test gradient (x -> sum ([1 2 3 ] .+ x .^ 2 ), (1 ,2 ,3 )) == (Tangent {Tuple{Int,Int,Int}} (6.0 , 12.0 , 18.0 ),)
114
114
115
115
# Bool output
116
- @test gradient (x -> sum (x .> 2 ), [1 ,2 ,3 ]) |> only |> iszero broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
117
- @test gradient (x -> sum (1 .+ iseven .(x)), [1 ,2 ,3 ]) |> only |> iszero broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
118
- @test gradient ((x,y) -> sum (x .== y), [1 ,2 ,3 ], [1 2 3 ]) == (NoTangent (), NoTangent ()) broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
116
+ @test gradient (x -> sum (x .> 2 ), [1 ,2 ,3 ]) |> only |> iszero
117
+ @test gradient (x -> sum (1 .+ iseven .(x)), [1 ,2 ,3 ]) |> only |> iszero
118
+ @test gradient ((x,y) -> sum (x .== y), [1 ,2 ,3 ], [1 2 3 ]) == (NoTangent (), NoTangent ())
119
119
# Bool input
120
- @test gradient (x -> sum (x .+ [1 ,2 ,3 ]), true ) |> only |> iszero broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
121
- @test gradient (x -> sum (x ./ [1 ,2 ,3 ]), [true false ]) |> only |> iszero broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
122
- @test gradient (x -> sum (x .* transpose ([1 ,2 ,3 ])), (true , false )) |> only |> iszero broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
120
+ @test gradient (x -> sum (x .+ [1 ,2 ,3 ]), true ) |> only |> iszero
121
+ @test gradient (x -> sum (x ./ [1 ,2 ,3 ]), [true false ]) |> only |> iszero
122
+ @test gradient (x -> sum (x .* transpose ([1 ,2 ,3 ])), (true , false )) |> only |> iszero
123
123
124
- @test_broken tup_adj = gradient ((x,y) -> sum (2 .* x .+ log .(y)), (1 ,2 ), transpose ([3 ,4 ,5 ])) # https://github.com/JuliaDiff/Diffractor.jl/issues/170
125
- @test tup_adj[1 ] == Tangent {Tuple{Int64, Int64}} (6.0 , 6.0 ) broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
126
- @test tup_adj[2 ] ≈ [0.6666666666666666 0.5 0.4 ] broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
127
- @test tup_adj[2 ] isa Transpose broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
128
- @test gradient (x -> sum (atan .(x, (1 ,2 ,3 ))), Diagonal ([4 ,5 ,6 ]))[1 ] isa Diagonal broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
124
+ tup_adj = gradient ((x,y) -> sum (2 .* x .+ log .(y)), (1 ,2 ), transpose ([3 ,4 ,5 ]))
125
+ @test tup_adj[1 ] == Tangent {Tuple{Int64, Int64}} (6.0 , 6.0 )
126
+ @test tup_adj[2 ] ≈ [0.6666666666666666 0.5 0.4 ]
127
+ @test tup_adj[2 ] isa Transpose
128
+ @test gradient (x -> sum (atan .(x, (1 ,2 ,3 ))), Diagonal ([4 ,5 ,6 ]))[1 ] isa Diagonal
129
129
130
130
# closure:
131
- @test gradient (x -> sum ((y -> (x* y)). ([1 ,2 ,3 ])), 4.0 ) == (6.0 ,) broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
131
+ @test gradient (x -> sum ((y -> (x* y)). ([1 ,2 ,3 ])), 4.0 ) == (6.0 ,)
132
132
end
133
133
134
134
@testset " broadcast, 2nd order" begin
135
135
# calls "split broadcasting generic" with f = unthunk
136
- @test gradient (x -> gradient (y -> sum (y .* y), x)[1 ] |> sum, [1 ,2 ,3.0 ])[1 ] == [2 ,2 ,2 ] broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
137
- @test gradient (x -> gradient (y -> sum (y .* x), x)[1 ]. ^ 3 |> sum, [1 ,2 ,3.0 ])[1 ] == [3 ,12 ,27 ] broken = true # https://github.com/JuliaDiff/Diffractor.jl/issues/170
136
+ @test gradient (x -> gradient (y -> sum (y .* y), x)[1 ] |> sum, [1 ,2 ,3.0 ])[1 ] == [2 ,2 ,2 ]
137
+ @test gradient (x -> gradient (y -> sum (y .* x), x)[1 ]. ^ 3 |> sum, [1 ,2 ,3.0 ])[1 ] == [3 ,12 ,27 ]
138
138
# Control flow support not fully implemented yet for higher-order
139
139
@test_broken gradient (x -> gradient (y -> sum (y .* 2 .* y' ), x)[1 ] |> sum, [1 ,2 ,3.0 ])[1 ] == [12 , 12 , 12 ]
140
140
153
153
@test_broken gradient (z -> gradient (x -> sum ((y -> (x^ 2 * y)). ([1 ,2 ,3 ])), z)[1 ], 5.0 ) == (12.0 ,)
154
154
end
155
155
156
- end
156
+ end
0 commit comments