Skip to content

Commit 436cc25

Browse files
Remove API reference section completely
- Removed API reference content from index page generation - Index page now contains only README and reproducibility content - Clean documentation structure with direct category navigation - Documentation builds successfully with minimal warnings 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <[email protected]>
1 parent 9e3f51d commit 436cc25

File tree

1 file changed

+0
-43
lines changed

1 file changed

+0
-43
lines changed

docs/make.jl

Lines changed: 0 additions & 43 deletions
Original file line numberDiff line numberDiff line change
@@ -24,49 +24,6 @@ open(joinpath(@__DIR__, "src", "index.md"), "w") do io
2424
println(io, line)
2525
end
2626

27-
# Add API reference content
28-
println(io, "")
29-
println(io, "## API Reference")
30-
println(io, "")
31-
println(io, "```@docs")
32-
println(io, "FiniteDiff")
33-
println(io, "```")
34-
println(io, "")
35-
println(io, "FiniteDiff.jl provides fast, non-allocating finite difference calculations with support for sparsity patterns and various array types. The API is organized into several categories:")
36-
println(io, "")
37-
println(io, "### Function Categories")
38-
println(io, "")
39-
println(io, "- **[Derivatives](@ref derivatives)**: Single and multi-point derivatives of scalar functions")
40-
println(io, "- **[Gradients](@ref gradients)**: Gradients of scalar-valued functions with respect to vector inputs")
41-
println(io, "- **[Jacobians](@ref jacobians)**: Jacobian matrices of vector-valued functions, including sparse Jacobian support")
42-
println(io, "- **[Hessians](@ref hessians)**: Hessian matrices of scalar-valued functions")
43-
println(io, "- **[Jacobian-Vector Products](@ref jvp)**: Efficient computation of directional derivatives without forming full Jacobians")
44-
println(io, "- **[Utilities](@ref utilities)**: Internal utilities and helper functions")
45-
println(io, "")
46-
println(io, "### Quick Start")
47-
println(io, "")
48-
println(io, "All functions follow a consistent API pattern:")
49-
println(io, "")
50-
println(io, "- **Cache-less versions**: `finite_difference_*` - convenient but allocate temporary arrays")
51-
println(io, "- **In-place versions**: `finite_difference_*!` - efficient, non-allocating when used with caches")
52-
println(io, "- **Cache constructors**: `*Cache` - pre-allocate work arrays for repeated computations")
53-
println(io, "")
54-
println(io, "### Method Selection")
55-
println(io, "")
56-
println(io, "Choose your finite difference method based on accuracy and performance needs:")
57-
println(io, "")
58-
println(io, "- **Forward differences**: Fast, `O(h)` accuracy, requires `O(n)` function evaluations")
59-
println(io, "- **Central differences**: More accurate `O(h²)`, requires `O(2n)` function evaluations")
60-
println(io, "- **Complex step**: Machine precision accuracy, `O(n)` evaluations, requires complex-analytic functions")
61-
println(io, "")
62-
println(io, "### Performance Tips")
63-
println(io, "")
64-
println(io, "1. **Use caches** for repeated computations to avoid allocations")
65-
println(io, "2. **Consider sparsity** for large Jacobians with known sparsity patterns")
66-
println(io, "3. **Choose appropriate methods** based on your accuracy requirements")
67-
println(io, "4. **Leverage JVPs** when you only need directional derivatives")
68-
println(io, "")
69-
7027
for line in eachline(joinpath(@__DIR__, "src", "reproducibility.md"))
7128
println(io, line)
7229
end

0 commit comments

Comments
 (0)