Skip to content

Commit b90b7b8

Browse files
committed
Update spacing and output for code block examples
1 parent c7f3b13 commit b90b7b8

File tree

1 file changed

+24
-22
lines changed

1 file changed

+24
-22
lines changed

docs/src/tutorials.md

Lines changed: 24 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -10,21 +10,21 @@ using FiniteDiff, StaticArrays
1010

1111
fcalls = 0
1212
function f(dx,x) # in-place
13-
global fcalls += 1
14-
for i in 2:length(x)-1
15-
dx[i] = x[i-1] - 2x[i] + x[i+1]
16-
end
17-
dx[1] = -2x[1] + x[2]
18-
dx[end] = x[end-1] - 2x[end]
19-
nothing
13+
global fcalls += 1
14+
for i in 2:length(x)-1
15+
dx[i] = x[i-1] - 2x[i] + x[i+1]
16+
end
17+
dx[1] = -2x[1] + x[2]
18+
dx[end] = x[end-1] - 2x[end]
19+
nothing
2020
end
2121

2222
const N = 10
2323
handleleft(x,i) = i==1 ? zero(eltype(x)) : x[i-1]
2424
handleright(x,i) = i==length(x) ? zero(eltype(x)) : x[i+1]
2525
function g(x) # out-of-place
26-
global fcalls += 1
27-
@SVector [handleleft(x,i) - 2x[i] + handleright(x,i) for i in 1:N]
26+
global fcalls += 1
27+
@SVector [handleleft(x,i) - 2x[i] + handleright(x,i) for i in 1:N]
2828
end
2929
```
3030

@@ -37,7 +37,7 @@ x = @SVector rand(N)
3737
FiniteDiff.finite_difference_jacobian(g,x)
3838

3939
#=
40-
10×10 SArray{Tuple{10,10},Float64,2,100} with indices SOneTo(10)×SOneTo(10):
40+
10×10 SMatrix{10, 10, Float64, 100} with indices SOneTo(10)×SOneTo(10):
4141
-2.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4242
1.0 -2.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4343
0.0 1.0 -2.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
@@ -65,7 +65,7 @@ FiniteDiff.finite_difference_jacobian!(output,f,x)
6565
output
6666

6767
#=
68-
10×10 Array{Float64,2}:
68+
10×10 Matrix{Float64}:
6969
-2.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7070
1.0 -2.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7171
0.0 1.0 -2.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
@@ -175,8 +175,8 @@ we get the analytical solution to the optimal matrix colors for our structured
175175
Jacobian. Now we can use this in our differencing routines:
176176

177177
```julia
178-
tridiagcache = FiniteDiff.JacobianCache(x,colorvec=colors,sparsity=tridiagjac)
179-
FiniteDiff.finite_difference_jacobian!(tridiagjac,f,x,tridiagcache)
178+
tridiagcache = FiniteDiff.JacobianCache(x, colorvec=colors, sparsity=tridiagjac)
179+
FiniteDiff.finite_difference_jacobian!(tridiagjac, f, x, tridiagcache)
180180
```
181181

182182
It'll use a special iteration scheme dependent on the matrix type to accelerate
@@ -189,14 +189,16 @@ differential equations, with a function like:
189189

190190
```julia
191191
function pde(out, x)
192-
x = reshape(x, 100, 100)
193-
out = reshape(out, 100, 100)
194-
for i in 1:100
195-
for j in 1:100
196-
out[i, j] = x[i, j] + x[max(i -1, 1), j] + x[min(i+1, size(x, 1)), j] + x[i, max(j-1, 1)] + x[i, min(j+1, size(x, 2))]
197-
end
198-
end
199-
return vec(out)
192+
x = reshape(x, 100, 100)
193+
out = reshape(out, 100, 100)
194+
m = size(x, 1)
195+
n = size(x, 2)
196+
for i in 1:100
197+
for j in 1:100
198+
out[i, j] = x[i, j] + x[max(i-1, 1), j] + x[min(i+1, m), j] + x[i, max(j-1, 1)] + x[i, min(j+1, n)]
199+
end
200+
end
201+
return vec(out)
200202
end
201203
x = rand(10000)
202204
```
@@ -212,4 +214,4 @@ bbbcache = FiniteDiff.JacobianCache(x,colorvec=colorsbbb,sparsity=Jbbb)
212214
FiniteDiff.finite_difference_jacobian!(Jbbb, pde, x, bbbcache)
213215
```
214216

215-
And boom, a fast Jacobian filling algorithm on your special matrix.
217+
And boom, a fast Jacobian filling algorithm on your special matrix.

0 commit comments

Comments
 (0)