|
| 1 | +#= |
| 2 | +# [Tutorial on Stepwise Initialization of a Complex Model](@id init-tutorial) |
| 3 | +
|
| 4 | +This example demonstrates how to initialize a complex network model with both static |
| 5 | +and dynamic components. We'll create a simple gas network model with three nodes |
| 6 | +and pipes connecting them, and show how to: |
| 7 | +
|
| 8 | +1. Create static models for initialization |
| 9 | +2. Find a steady-state solution |
| 10 | +3. Create corresponding dynamic models |
| 11 | +4. Initialize the dynamic models with the steady-state solution |
| 12 | +5. Simulate the system with dynamic behavior |
| 13 | +
|
| 14 | +This script can be downloaded as a normal Julia script [here](@__NAME__.jl). #md |
| 15 | +
|
| 16 | +First, let's import the necessary packages: |
| 17 | +=# |
| 18 | + |
| 19 | +using NetworkDynamics |
| 20 | +using ModelingToolkit |
| 21 | +using ModelingToolkit: t_nounits as t, D_nounits as D |
| 22 | +using OrdinaryDiffEqTsit5 |
| 23 | +using CairoMakie |
| 24 | +nothing #hide |
| 25 | + |
| 26 | +#= |
| 27 | +## Node Models |
| 28 | +
|
| 29 | +We'll start by defining our node models using ModelingToolkit. |
| 30 | +First, let's create a template for common states and equations in all gas nodes: |
| 31 | +=# |
| 32 | +@mtkmodel GasNode begin |
| 33 | + @variables begin |
| 34 | + p(t), [description="Pressure"] # node output |
| 35 | + q̃_nw(t), [description="aggregated flow from pipes into node"] # node input |
| 36 | + q̃_inj(t), [description="flow injected into the network"] |
| 37 | + end |
| 38 | + @equations begin |
| 39 | + q̃_inj ~ -q̃_nw |
| 40 | + end |
| 41 | +end |
| 42 | +nothing #hide |
| 43 | + |
| 44 | +#= |
| 45 | +Now we'll define three specific node types: |
| 46 | +
|
| 47 | +**A) A constant pressure node that forces pressure to maintain a specific value** |
| 48 | +=# |
| 49 | +@mtkmodel ConstantPressureNode begin |
| 50 | + @extend GasNode() |
| 51 | + @parameters begin |
| 52 | + p_set, [description="Constant pressure setpoint"] |
| 53 | + end |
| 54 | + @equations begin |
| 55 | + p ~ p_set |
| 56 | + end |
| 57 | +end |
| 58 | +nothing #hide |
| 59 | + |
| 60 | +#= |
| 61 | +**B) A static prosumer node which forces a certain flow (pressure is fully implicit)** |
| 62 | +=# |
| 63 | +@mtkmodel StaticProsumerNode begin |
| 64 | + @extend GasNode() |
| 65 | + @parameters begin |
| 66 | + q̃_prosumer, [description="flow injected by prosumer"] |
| 67 | + end |
| 68 | + @equations begin |
| 69 | + -q̃_nw ~ q̃_prosumer |
| 70 | + end |
| 71 | +end |
| 72 | +nothing #hide |
| 73 | + |
| 74 | +#= |
| 75 | +**C) A dynamic prosumer node with compliance, which adds dynamics to the pressure state** |
| 76 | +=# |
| 77 | +@mtkmodel DynamicProsumerNode begin |
| 78 | + @extend GasNode() |
| 79 | + @parameters begin |
| 80 | + q̃_prosumer, [description="flow injected by prosumer"] |
| 81 | + C=0.1, [description="Compliance"] |
| 82 | + end |
| 83 | + @equations begin |
| 84 | + C*D(p) ~ q̃_prosumer + q̃_nw |
| 85 | + end |
| 86 | +end |
| 87 | +nothing #hide |
| 88 | + |
| 89 | +#= |
| 90 | +**D) A pressure control node that tries to maintain a set pressure by adjusting its injection** |
| 91 | +=# |
| 92 | +@mtkmodel PressureControlNode begin |
| 93 | + @extend GasNode() |
| 94 | + @parameters begin |
| 95 | + p_set, [description="Pressure setpoint", guess=1] |
| 96 | + K_p=1, [description="Proportional gain"] |
| 97 | + K_i=1, [description="Integral gain"] |
| 98 | + C=0.1, [description="Compliance"] |
| 99 | + end |
| 100 | + @variables begin |
| 101 | + Δp(t), [description="Pressure error"] |
| 102 | + ξ(t), [description="Integral state", guess=0] |
| 103 | + q̃_prosumer(t), [description="flow injected by producer"] |
| 104 | + end |
| 105 | + @equations begin |
| 106 | + Δp ~ p_set - p |
| 107 | + D(ξ) ~ Δp |
| 108 | + q̃_prosumer ~ K_p*Δp + K_i*ξ |
| 109 | + C*D(p) ~ q̃_prosumer + q̃_nw |
| 110 | + end |
| 111 | +end |
| 112 | +nothing #hide |
| 113 | + |
| 114 | +#= |
| 115 | +## Edge Models |
| 116 | +
|
| 117 | +Now we'll define our edge models, starting with a template for the pipe: |
| 118 | +=# |
| 119 | +@mtkmodel GasPipe begin |
| 120 | + @variables begin |
| 121 | + q̃(t), [description="flow through pipe"] #output |
| 122 | + p_src(t), [description="pressure at start of pipe"] #input |
| 123 | + p_dst(t), [description="pressure at end of pipe"] #input |
| 124 | + end |
| 125 | +end |
| 126 | +nothing #hide |
| 127 | + |
| 128 | +#= |
| 129 | +Next, we define a dynamic pipe with inertia (a simple delayed model): |
| 130 | +=# |
| 131 | +@mtkmodel DynamicPipe begin |
| 132 | + @extend GasPipe() |
| 133 | + @parameters begin |
| 134 | + R=0.1, [description="Resistance"] |
| 135 | + M=0.1, [description="Inertia"] |
| 136 | + end |
| 137 | + @equations begin |
| 138 | + M*D(q̃) ~ (p_src - p_dst)/R - q̃ # some simple delayed model |
| 139 | + end |
| 140 | +end |
| 141 | +nothing #hide |
| 142 | + |
| 143 | +#= |
| 144 | +And finally a quasistatic pipe model for initialization purposes. This equals the |
| 145 | +dynamic model in steady state, making it ideal for finding initial conditions: |
| 146 | +=# |
| 147 | +@mtkmodel QuasistaticPipe begin |
| 148 | + @extend GasPipe() |
| 149 | + @parameters begin |
| 150 | + R=0.1, [description="Resistance"] |
| 151 | + end |
| 152 | + @equations begin |
| 153 | + q̃ ~ (p_src - p_dst)/R |
| 154 | + end |
| 155 | +end |
| 156 | +nothing #hide |
| 157 | + |
| 158 | +#= |
| 159 | +## Defining a Static Model for Initialization |
| 160 | +
|
| 161 | +Our first step is to define a static model that we'll use to find the steady-state solution. |
| 162 | +This is a crucial step for initializing complex dynamic models. |
| 163 | +
|
| 164 | +Step 1: Define all the components of our static model |
| 165 | +First, node 1 is our producer which will later be a controlled producer. For initialization, we use a static model: |
| 166 | +=# |
| 167 | +@named v1_mod_static = ConstantPressureNode(p_set=1) |
| 168 | +v1_static = VertexModel(v1_mod_static, [:q̃_nw], [:p], vidx=1) |
| 169 | + |
| 170 | +## Nodes 2 and 3 are consumers. For them, we'll use static prosumer models: |
| 171 | +@named v2_mod_static = StaticProsumerNode(q̃_prosumer=-0.6) # consumer |
| 172 | +v2_static = VertexModel(v2_mod_static, [:q̃_nw], [:p], vidx=2) |
| 173 | + |
| 174 | +@named v3_mod_static = StaticProsumerNode(q̃_prosumer=-0.4) # consumer |
| 175 | +v3_static = VertexModel(v3_mod_static, [:q̃_nw], [:p], vidx=3) |
| 176 | +nothing #hide |
| 177 | + |
| 178 | +#= |
| 179 | +Now we define the static pipe models connecting our nodes: |
| 180 | +=# |
| 181 | +@named p_mod_static = QuasistaticPipe() |
| 182 | +p12_static = EdgeModel(p_mod_static, [:p_src], [:p_dst], AntiSymmetric([:q̃]), src=1, dst=2) |
| 183 | +p13_static = EdgeModel(p_mod_static, [:p_src], [:p_dst], AntiSymmetric([:q̃]), src=1, dst=3) |
| 184 | +p23_static = EdgeModel(p_mod_static, [:p_src], [:p_dst], AntiSymmetric([:q̃]), src=2, dst=3) |
| 185 | +nothing #hide |
| 186 | +#= |
| 187 | +Assemble all components into a static network: |
| 188 | +=# |
| 189 | +nw_static = Network([v1_static, v2_static, v3_static], [p12_static, p13_static, p23_static]) |
| 190 | + |
| 191 | +#= |
| 192 | +Create an initial guess for the steady state and modify it with reasonable values: |
| 193 | +=# |
| 194 | +u_static_guess = NWState(nw_static) |
| 195 | +u_static_guess.v[2, :p] = 1.0 |
| 196 | +u_static_guess.v[3, :p] = 1.0 |
| 197 | +nothing #hide |
| 198 | + |
| 199 | +#= |
| 200 | +Find the steady-state solution using our initial guess: |
| 201 | +=# |
| 202 | +u_static = find_fixpoint(nw_static, u_static_guess) |
| 203 | + |
| 204 | +#= |
| 205 | +## Defining a Dynamic Model |
| 206 | +
|
| 207 | +Now we'll define our dynamic model using more complex components: |
| 208 | +=# |
| 209 | +@named v1_mod_dyn = PressureControlNode() |
| 210 | +v1_dyn = VertexModel(v1_mod_dyn, [:q̃_nw], [:p], vidx=1) |
| 211 | + |
| 212 | +@named v2_mod_dyn = DynamicProsumerNode(q̃_prosumer=-0.6) |
| 213 | +v2_dyn = VertexModel(v2_mod_dyn, [:q̃_nw], [:p], vidx=2) |
| 214 | + |
| 215 | +@named v3_mod_dyn = DynamicProsumerNode(q̃_prosumer=-0.4) |
| 216 | +v3_dyn = VertexModel(v3_mod_dyn, [:q̃_nw], [:p], vidx=3) |
| 217 | +nothing #hide |
| 218 | + |
| 219 | +#= |
| 220 | +Create dynamic pipe models with inertia: |
| 221 | +=# |
| 222 | +@named p_mod_dyn = DynamicPipe() |
| 223 | +p12_dyn = EdgeModel(p_mod_dyn, [:p_src], [:p_dst], AntiSymmetric([:q̃]), src=1, dst=2) |
| 224 | +p13_dyn = EdgeModel(p_mod_dyn, [:p_src], [:p_dst], AntiSymmetric([:q̃]), src=1, dst=3) |
| 225 | +p23_dyn = EdgeModel(p_mod_dyn, [:p_src], [:p_dst], AntiSymmetric([:q̃]), src=2, dst=3) |
| 226 | +nothing #hide |
| 227 | + |
| 228 | +#= |
| 229 | +Assemble the dynamic network: |
| 230 | +=# |
| 231 | +nw_dyn = Network([v1_dyn, v2_dyn, v3_dyn], [p12_dyn, p13_dyn, p23_dyn]) |
| 232 | + |
| 233 | +#= |
| 234 | +## Initializing the Dynamic Model with the Static Solution |
| 235 | +
|
| 236 | +Now comes the important part: we need to initialize the interface values (pressures and flows) |
| 237 | +of the dynamic model with the results from the static model. |
| 238 | +
|
| 239 | +We can do this manually: |
| 240 | +=# |
| 241 | +## Vertex 1: output |
| 242 | +set_default!(nw_dyn[VIndex(1)], :p, u_static.v[1, :p]) |
| 243 | +## Vertex 1: input |
| 244 | +set_default!(nw_dyn[VIndex(1)], :q̃_nw, u_static.v[1, :q̃_nw]) |
| 245 | +nothing #hide |
| 246 | + |
| 247 | +#= |
| 248 | +But there is also a built-in method [`set_interface_defaults!`](@ref) which we can use |
| 249 | +automatically: |
| 250 | +=# |
| 251 | +set_interface_defaults!(nw_dyn, u_static; verbose=true) |
| 252 | +nothing #hide |
| 253 | + |
| 254 | +#= |
| 255 | +With the interfaces all set, we can "initialize" the internal states of the dynamic models. |
| 256 | +
|
| 257 | +For example, let's inspect the state of our first vertex: |
| 258 | +=# |
| 259 | +nw_dyn[VIndex(1)] |
| 260 | + |
| 261 | +#= |
| 262 | +We observe that both the initial state `ξ` as well as the pressure setpoint `p_set` |
| 263 | +are left "free". Using [`initialize_component!`](@ref), we can try to find values for the |
| 264 | +"free" states and parameters such that the interface constraints are fulfilled. |
| 265 | +=# |
| 266 | +initialize_component!(nw_dyn[VIndex(1)]) |
| 267 | +#= |
| 268 | +We may also use [`dump_initial_state`](@ref) to get a more detailed view of the state: |
| 269 | +=# |
| 270 | +dump_initial_state(nw_dyn[VIndex(1)]) |
| 271 | +nothing #hide |
| 272 | + |
| 273 | +#= |
| 274 | +We can also initialize the other two vertices, however it is unnecessary |
| 275 | +since their state is already completely determined by the fixed input/output: |
| 276 | +=# |
| 277 | +initialize_component!(nw_dyn[VIndex(2)]) |
| 278 | +initialize_component!(nw_dyn[VIndex(3)]) |
| 279 | +nothing #hide |
| 280 | + |
| 281 | +#= |
| 282 | +Similarly, we can initialize the dynamic pipe models. However, since their dynamic state |
| 283 | +equals the output, once again there is nothing to initialize. |
| 284 | +=# |
| 285 | +initialize_component!(nw_dyn[EIndex(1)]) |
| 286 | +initialize_component!(nw_dyn[EIndex(2)]) |
| 287 | +initialize_component!(nw_dyn[EIndex(3)]) |
| 288 | +nothing #hide |
| 289 | + |
| 290 | +#= |
| 291 | +Now, everything is initialized, which means every input, output, state and parameter |
| 292 | +either has a `default` metadata or an `init` metadata. When constructing the `NWState` |
| 293 | +for this network, it will be filled with all those values which should now correspond |
| 294 | +to a steady state of the system: |
| 295 | +=# |
| 296 | +u0_dyn = NWState(nw_dyn) |
| 297 | + |
| 298 | +#= |
| 299 | +Let's verify that our initialization is correct by checking that the derivatives are close to zero: |
| 300 | +=# |
| 301 | +du = ones(dim(nw_dyn)) |
| 302 | +nw_dyn(du, uflat(u0_dyn), pflat(u0_dyn), 0.0) |
| 303 | +extrema(du .- zeros(dim(nw_dyn))) # very close to zero, confirming we have a steady state! |
| 304 | + |
| 305 | +#= |
| 306 | +## Simulating the Dynamic Model |
| 307 | +
|
| 308 | +Now we can solve the dynamic model and add a disturbance to see how the system responds: |
| 309 | +=# |
| 310 | +affect = ComponentAffect([], [:q̃_prosumer]) do u, p, ctx |
| 311 | + @info "Increase consumer demand at t=$(ctx.t)" |
| 312 | + p[:q̃_prosumer] -= 0.1 |
| 313 | +end |
| 314 | +cb = PresetTimeComponentCallback([1.0], affect) |
| 315 | +set_callback!(nw_dyn[VIndex(2)], cb) # attach disturbance to second node |
| 316 | +nothing #hide |
| 317 | + |
| 318 | +#= |
| 319 | +Create and solve the ODE problem with the callback: |
| 320 | +=# |
| 321 | +prob = ODEProblem(nw_dyn, copy(uflat(u0_dyn)), (0, 7), copy(pflat(u0_dyn)); |
| 322 | + callback=get_callbacks(nw_dyn)) |
| 323 | +sol = solve(prob, Tsit5()) |
| 324 | +nothing #hide |
| 325 | + |
| 326 | +#= |
| 327 | +## Visualizing the Results |
| 328 | +
|
| 329 | +Finally, let's visualize the results of our simulation. |
| 330 | +The plots show how our gas network responds to the increased consumer demand at t=1: |
| 331 | +
|
| 332 | +1. **Pressure at nodes**: We see a pressure drop at all nodes after the disturbance before the pressure is stabilized by the controller. |
| 333 | +
|
| 334 | +2. **Injection by producer**: Node 1 increases its injection to compensate for the higher demand. |
| 335 | +
|
| 336 | +3. **Draw by consumers**: The solid lines show the actual flows at nodes 2 and 3, while the dashed lines show the set consumer demands. At t=1, we see the step change in consumer demand at node 2. |
| 337 | +
|
| 338 | +4. **Flows through pipes**: Shows how the flows in all pipes adjust to the new demand pattern. |
| 339 | +=# |
| 340 | + |
| 341 | +let |
| 342 | + fig = Figure(size=(1000,1000)) |
| 343 | + ax = Axis(fig[1, 1]; title="Pressure at nodes") |
| 344 | + for i in 1:3 |
| 345 | + lines!(ax, sol; idxs=VIndex(i, :p), label="Node $i", color=Cycled(i)) |
| 346 | + end |
| 347 | + |
| 348 | + ax = Axis(fig[2, 1]; title="Injection by producer") |
| 349 | + lines!(ax, sol; idxs=VIndex(1, :q̃_inj), label="Node 1", color=Cycled(1)) |
| 350 | + |
| 351 | + ax = Axis(fig[3, 1]; title="Draw by consumers") |
| 352 | + for i in 2:3 |
| 353 | + lines!(ax, sol; idxs=@obsex(-1*VIndex(i, :q̃_inj)), label="Node $i", color=Cycled(i)) |
| 354 | + lines!(ax, sol; idxs=@obsex(-1*VIndex(i, :q̃_prosumer)), label="Node $i", linestyle=:dash, color=Cycled(i)) |
| 355 | + end |
| 356 | + |
| 357 | + ax = Axis(fig[4, 1]; title="Flows through pipes") |
| 358 | + for i in 1:3 |
| 359 | + lines!(ax, sol; idxs=@obsex(abs(EIndex(i, :q̃))), label="Pipe $i", color=Cycled(i)) |
| 360 | + end |
| 361 | + |
| 362 | + fig |
| 363 | +end |
| 364 | + |
| 365 | +#= |
| 366 | +## Interactive Visualization |
| 367 | +
|
| 368 | +You can also visualize the results interactively using NetworkDynamicsInspector: |
| 369 | +
|
| 370 | +```julia |
| 371 | +using NetworkDynamicsInspector |
| 372 | +inspect(sol) |
| 373 | +``` |
| 374 | +=# |
0 commit comments