Skip to content

Commit 7009b20

Browse files
Added Hyperchaotic Roessler and Lorenz systems (#9)
* added lorenz and roessler hyperchaotic systems * Added citation for hyperchaotic Lorenz * cds=>coupledodes for hyperchaotic roessler and lorenz
1 parent 5607afb commit 7009b20

File tree

1 file changed

+87
-1
lines changed

1 file changed

+87
-1
lines changed

src/continuous_famous_systems.jl

Lines changed: 87 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1754,4 +1754,90 @@ function CompetitionDynamicsParameters(option = 1)
17541754
μs = zeros(Float64, N)
17551755
Rcoups = zeros(Float64, 3)
17561756
return CompetitionDynamicsParameters(rs, ms, Ss, μs, Rcoups, Ks, cs, D)
1757-
end
1757+
end
1758+
1759+
"""
1760+
```julia
1761+
hyper_roessler(u0 = [-10.0, -6.0, 0.0, 10.0];
1762+
a = 0.25,
1763+
b = 3.0,
1764+
c = 0.5,
1765+
d = 0.05)
1766+
```
1767+
```math
1768+
\\begin{aligned}
1769+
\\dot{x} &= -y - z\\\\
1770+
\\dot{y} &= x + a*y + w\\\\
1771+
\\dot{z} &= b + x*z\\\\
1772+
\\dot{w} &= -c*z + d*w
1773+
\\end{aligned}
1774+
```
1775+
An extension of the Rössler system showchasing hyperchaos[^Rossler1979].
1776+
An hyperchaotic system is characterized by two positive Lyapunov exponents.
1777+
1778+
[^Rossler1979]:
1779+
Rossler, O. (1979). An equation for hyperchaos.
1780+
Physics Letters A, 71(2-3), 155-157.
1781+
"""
1782+
function hyper_roessler(u0 = [-10.0, -6.0, 0.0, 10.0];
1783+
a = 0.25,
1784+
b = 3.0,
1785+
c = 0.5,
1786+
d = 0.05)
1787+
return CoupledODEs(hyper_roessler_rule, u0, [a, b, c, d])
1788+
end
1789+
1790+
function hyper_roessler_rule(u, p, t)
1791+
@inbounds begin
1792+
x, y, z, w = u
1793+
a, b, c, d = p
1794+
du1 = -y -z
1795+
du2 = x + a*y + w
1796+
du3 = b + x*z
1797+
du4 = -c*z + d*w
1798+
end
1799+
return SVector{4}(du1, du2, du3, du4)
1800+
end
1801+
1802+
"""
1803+
```julia
1804+
function hyper_lorenz(u0 = [-10.0, -6.0, 0.0, 10.0];
1805+
a = 10.0,
1806+
b = 28.0,
1807+
c = 8/3,
1808+
d = -1.0)
1809+
```
1810+
```math
1811+
\\begin{aligned}
1812+
\\dot{x} &= a*(y - x) + w\\\\
1813+
\\dot{y} &= x*(b - z) - y\\\\
1814+
\\dot{z} &= x*y - c*z\\\\
1815+
\\dot{w} &= d*w -y*z
1816+
\\end{aligned}
1817+
```
1818+
An extension of the Lorenz system showchasing hyperchaos[^Wang2008].
1819+
An hyperchaotic system is characterized by two positive Lyapunov exponents.
1820+
1821+
[^Wang2008]:
1822+
Wang, X., & Wang, M. (2008). A hyperchaos generated from Lorenz system.
1823+
Physica A: Statistical Mechanics and its Applications, 387(14), 3751-3758.
1824+
"""
1825+
function hyper_lorenz(u0 = [-10.0, -6.0, 0.0, 10.0];
1826+
a = 10.0,
1827+
b = 28.0,
1828+
c = 8/3,
1829+
d = -1.0)
1830+
return CoupledODEs(hyper_lorenz_rule, u0, [a, b, c, d])
1831+
end
1832+
1833+
function hyper_lorenz_rule(u, p, t)
1834+
@inbounds begin
1835+
x, y, z, w = u
1836+
a, b, c, d = p
1837+
du1 = a*(y - x) + w
1838+
du2 = x*(b - z) - y
1839+
du3 = x*y - c*z
1840+
du4 = d*w -y*z
1841+
end
1842+
return SVector{4}(du1, du2, du3, du4)
1843+
end

0 commit comments

Comments
 (0)