Skip to content

Commit b803cd6

Browse files
authored
Some LaTeX rendering fixes (#20)
* fixes latex rendering * undo punctuation style * undo punctuation style
1 parent 56fa24b commit b803cd6

File tree

1 file changed

+26
-26
lines changed

1 file changed

+26
-26
lines changed

src/continuous_famous_systems.jl

Lines changed: 26 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -733,7 +733,7 @@ end
733733
```
734734
Thomas' cyclically symmetric attractor is a 3D strange attractor originally proposed
735735
by René Thomas[^Thomas1999]. It has a simple form which is cyclically symmetric in the
736-
x,y, and z variables and can be viewed as the trajectory of a frictionally dampened
736+
x, y, and z variables and can be viewed as the trajectory of a frictionally dampened
737737
particle moving in a 3D lattice of forces.
738738
For more see the [Wikipedia page](https://en.wikipedia.org/wiki/Thomas%27_cyclically_symmetric_attractor).
739739
@@ -1009,7 +1009,7 @@ hodgkinhuxley(u0=[-60.0, 0.0, 0.0, 0.0]; I = 12.0, Vna = 50.0, Vk = -77.0, Vl =
10091009
```
10101010
```math
10111011
\\begin{aligned}
1012-
C_m \\frac{dV_m}{dt} = -\\overline{g}_\\mathrm{K} n^4 (V_m - V_\\mathrm{K}) - \\overline{g}_\\mathrm{Na} m^3 h(V_m - V_\\mathrm{Na}) - \\overline{g}_l (V_m - Vl) + I\\\\
1012+
C_m \\frac{dV_m}{dt} &= -\\overline{g}_\\mathrm{K} n^4 (V_m - V_\\mathrm{K}) - \\overline{g}_\\mathrm{Na} m^3 h(V_m - V_\\mathrm{Na}) - \\overline{g}_l (V_m - Vl) + I\\\\
10131013
\\dot{n} &= \\alpha_n(V_m)(1-n) - \\beta_n(V_m)n \\\\
10141014
\\dot{m} &= \\alpha_m(V_m)(1-m) - \\beta_m(V_m)m \\\\
10151015
\\dot{h} &= \\alpha_h(V_m)(1-h) - \\beta_h(V_m)h \\\\
@@ -1076,7 +1076,7 @@ vanderpol(u0=[0.5, 0.0]; μ=1.5, F=1.2, T=10) -> ds
10761076
```
10771077
```math
10781078
\\begin{aligned}
1079-
\\ddot{x} -\\mu (1-x^2) \\dot{x} + x = F \\cos(\\frac{2\\pi t}{T})
1079+
\\ddot{x} -\\mu (1-x^2) \\dot{x} + x = F \\cos(2\\pi t / T)
10801080
\\end{aligned}
10811081
```
10821082
The forced van der Pol oscillator is an oscillator with a nonlinear damping term driven
@@ -1091,7 +1091,7 @@ additionally have chaotic behavior.
10911091
The van der Pol oscillator is a specific case of both the FitzHugh-Nagumo neural
10921092
model [^Kanamaru2007]. The default damping parameter is taken from [^Strogatz2015]
10931093
and the forcing parameters are taken from [^Kanamaru2007], which generate periodic
1094-
oscillations. Setting `\\mu=8.53` generates chaotic oscillations.
1094+
oscillations. Setting ``\\mu=8.53`` generates chaotic oscillations.
10951095
10961096
[^Kanamaru2007]: Takashi Kanamaru (2007) "Van der Pol oscillator", Scholarpedia, 2(1):2202.
10971097
@@ -1277,7 +1277,7 @@ It can be written in cartesian coordinates as [^Deco2017]
12771277
```
12781278
12791279
The dynamical analysis of the system is greatly facilitated by putting it in polar coordinates,
1280-
where it becomes the normal form of the supercritical Hopf bifurcation) [^Strogatz2015].
1280+
where it takes the normal form of the supercritical Hopf bifurcation) [^Strogatz2015].
12811281
```math
12821282
\\begin{aligned}
12831283
\\dot{r} &= \\mu r - r^3, \\\\
@@ -1350,8 +1350,8 @@ riddled_basins(u0=[0.5, 0.6, 0, 0]; γ=0.05, x̄ = 1.9, f₀=2.3, ω =3.5, x₀=
13501350
```math
13511351
\\begin{aligned}
13521352
\\dot{x} &= v_x, \\quad \\dot{y} = v_z \\\\
1353-
\\dot{v}_x &= -\\gamma v_x - ( -4x(1-x^2) +y^2) + f_0 \\sin(\\omega t)x_0 \\\\
1354-
\\dot{v}_y &= -\\gamma v_y - (2y(x+\\bar{x})) + f_0 \\sin(\\omega t)y_0
1353+
\\dot{v}_x &= -\\gamma v_x - [ -4x(1-x^2) +y^2] + f_0 \\sin(\\omega t)x_0 \\\\
1354+
\\dot{v}_y &= -\\gamma v_y - 2y (x+\\bar{x}) + f_0 \\sin(\\omega t)y_0
13551355
\\end{aligned}
13561356
```
13571357
This 5 dimensional (time-forced) dynamical system was used by Ott et al [^OttRiddled2014]
@@ -1393,14 +1393,14 @@ Pacific barnacle [^MorrisLecar1981]. Its evolution is given by:
13931393
```math
13941394
\\begin{aligned}
13951395
\\dot{V} &= -g_{Ca} M(V) (V - V_{Ca}) - g_K N (V - V_K) - g_L (V - V_L) + I \\\\
1396-
\\dot{N} &= (1/\tau) (-N + G(V)) \\\\
1396+
\\dot{N} &= (-N + G(V)) / \tau \\\\
13971397
\\end{aligned}
13981398
```
13991399
with
14001400
```math
14011401
\\begin{aligned}
1402-
M(V) = 0.5 (1 + \tanh((x-V1)/V2)) \\\\
1403-
G(V) = 0.5 (1 + \tanh((x-V3)/V4)) \\\\
1402+
M(V) = 0.5 (1 + \\tanh((x-V1)/V2)) \\\\
1403+
G(V) = 0.5 (1 + \\tanh((x-V3)/V4)) \\\\
14041404
```
14051405
14061406
[^IzhikevichBook]:
@@ -2003,10 +2003,10 @@ function hyper_bao(u0 = [5.0, 8.0, 12.0, 21.0];
20032003
```
20042004
```math
20052005
\\begin{aligned}
2006-
\\dot{x} &= a*(y - x) + w\\\\
2007-
\\dot{y} &= c*y - x*z\\\\
2008-
\\dot{z} &= x*y - b*z\\\\
2009-
\\dot{w} &= k*x - d*y*z
2006+
\\dot{x} &= a (y - x) + w\\\\
2007+
\\dot{y} &= c y - x z\\\\
2008+
\\dot{z} &= x y - b z\\\\
2009+
\\dot{w} &= k x - d y z
20102010
\\end{aligned}
20112011
```
20122012
A system showchasing hyperchaos obtained from the Lu system[^Bo-Cheng2008].
@@ -2046,10 +2046,10 @@ function hyper_cai(u0 = [1.0, 1.0, 20.0, 10.0];
20462046
```
20472047
```math
20482048
\\begin{aligned}
2049-
\\dot{x} &= a*(y - x)\\\\
2050-
\\dot{y} &= b*x + c*y - x*z + w\\\\
2051-
\\dot{z} &= -d*z + y^2\\\\
2052-
\\dot{w} &= -e*x
2049+
\\dot{x} &= a (y - x)\\\\
2050+
\\dot{y} &= b x + c y - x z + w\\\\
2051+
\\dot{z} &= -d z + y^2\\\\
2052+
\\dot{w} &= -e x
20532053
\\end{aligned}
20542054
```
20552055
A system showchasing hyperchaos obtained from the Finance system[^Cai2007].
@@ -2088,10 +2088,10 @@ function hyper_lu(u0 = [5.0, 8.0, 12.0, 21.0];
20882088
```
20892089
```math
20902090
\\begin{aligned}
2091-
\\dot{x} &= a*(y - x) + w\\\\
2092-
\\dot{y} &= c*y - x*z\\\\
2093-
\\dot{z} &= x*y - b*z\\\\
2094-
\\dot{w} &= d*w + x*z
2091+
\\dot{x} &= a (y - x) + w\\\\
2092+
\\dot{y} &= c y - x z\\\\
2093+
\\dot{z} &= x y - b z\\\\
2094+
\\dot{w} &= d w + x z
20952095
\\end{aligned}
20962096
```
20972097
A system showchasing hyperchaos obtained from the Lu system[^Chen2006].
@@ -2129,10 +2129,10 @@ function hyper_pang(u0 = [1.0, 1.0, 10.0, 1.0];
21292129
```
21302130
```math
21312131
\\begin{aligned}
2132-
\\dot{x} &= a*(y - x)\\\\
2133-
\\dot{y} &= -x*z + c*y + w\\\\
2134-
\\dot{z} &= x*y - b*z\\\\
2135-
\\dot{w} &= -d*x - d*y
2132+
\\dot{x} &= a (y - x)\\\\
2133+
\\dot{y} &= -x z + c y + w\\\\
2134+
\\dot{z} &= x y - b z\\\\
2135+
\\dot{w} &= -d x - d y
21362136
\\end{aligned}
21372137
```
21382138
A system showchasing hyperchaos obtained from the Lu system[^Pang2011].

0 commit comments

Comments
 (0)