733
733
```
734
734
Thomas' cyclically symmetric attractor is a 3D strange attractor originally proposed
735
735
by René Thomas[^Thomas1999]. It has a simple form which is cyclically symmetric in the
736
- x,y, and z variables and can be viewed as the trajectory of a frictionally dampened
736
+ x, y, and z variables and can be viewed as the trajectory of a frictionally dampened
737
737
particle moving in a 3D lattice of forces.
738
738
For more see the [Wikipedia page](https://en.wikipedia.org/wiki/Thomas%27_cyclically_symmetric_attractor).
739
739
@@ -1009,7 +1009,7 @@ hodgkinhuxley(u0=[-60.0, 0.0, 0.0, 0.0]; I = 12.0, Vna = 50.0, Vk = -77.0, Vl =
1009
1009
```
1010
1010
```math
1011
1011
\\ begin{aligned}
1012
- C_m \\ frac{dV_m}{dt} = -\\ overline{g}_\\ mathrm{K} n^4 (V_m - V_\\ mathrm{K}) - \\ overline{g}_\\ mathrm{Na} m^3 h(V_m - V_\\ mathrm{Na}) - \\ overline{g}_l (V_m - Vl) + I\\\\
1012
+ C_m \\ frac{dV_m}{dt} & = -\\ overline{g}_\\ mathrm{K} n^4 (V_m - V_\\ mathrm{K}) - \\ overline{g}_\\ mathrm{Na} m^3 h(V_m - V_\\ mathrm{Na}) - \\ overline{g}_l (V_m - Vl) + I\\\\
1013
1013
\\ dot{n} &= \\ alpha_n(V_m)(1-n) - \\ beta_n(V_m)n \\\\
1014
1014
\\ dot{m} &= \\ alpha_m(V_m)(1-m) - \\ beta_m(V_m)m \\\\
1015
1015
\\ dot{h} &= \\ alpha_h(V_m)(1-h) - \\ beta_h(V_m)h \\\\
@@ -1076,7 +1076,7 @@ vanderpol(u0=[0.5, 0.0]; μ=1.5, F=1.2, T=10) -> ds
1076
1076
```
1077
1077
```math
1078
1078
\\ begin{aligned}
1079
- \\ ddot{x} -\\ mu (1-x^2) \\ dot{x} + x = F \\ cos(\\ frac{ 2\\ pi t}{T} )
1079
+ \\ ddot{x} -\\ mu (1-x^2) \\ dot{x} + x = F \\ cos(2\\ pi t / T )
1080
1080
\\ end{aligned}
1081
1081
```
1082
1082
The forced van der Pol oscillator is an oscillator with a nonlinear damping term driven
@@ -1091,7 +1091,7 @@ additionally have chaotic behavior.
1091
1091
The van der Pol oscillator is a specific case of both the FitzHugh-Nagumo neural
1092
1092
model [^Kanamaru2007]. The default damping parameter is taken from [^Strogatz2015]
1093
1093
and the forcing parameters are taken from [^Kanamaru2007], which generate periodic
1094
- oscillations. Setting `\\ mu=8.53` generates chaotic oscillations.
1094
+ oscillations. Setting `` \\ mu=8.53` ` generates chaotic oscillations.
1095
1095
1096
1096
[^Kanamaru2007]: Takashi Kanamaru (2007) "Van der Pol oscillator", Scholarpedia, 2(1):2202.
1097
1097
@@ -1277,7 +1277,7 @@ It can be written in cartesian coordinates as [^Deco2017]
1277
1277
```
1278
1278
1279
1279
The dynamical analysis of the system is greatly facilitated by putting it in polar coordinates,
1280
- where it becomes the normal form of the supercritical Hopf bifurcation) [^Strogatz2015].
1280
+ where it takes the normal form of the supercritical Hopf bifurcation) [^Strogatz2015].
1281
1281
```math
1282
1282
\\ begin{aligned}
1283
1283
\\ dot{r} &= \\ mu r - r^3, \\\\
@@ -1350,8 +1350,8 @@ riddled_basins(u0=[0.5, 0.6, 0, 0]; γ=0.05, x̄ = 1.9, f₀=2.3, ω =3.5, x₀=
1350
1350
```math
1351
1351
\\ begin{aligned}
1352
1352
\\ dot{x} &= v_x, \\ quad \\ dot{y} = v_z \\\\
1353
- \\ dot{v}_x &= -\\ gamma v_x - ( -4x(1-x^2) +y^2) + f_0 \\ sin(\\ omega t)x_0 \\\\
1354
- \\ dot{v}_y &= -\\ gamma v_y - (2y (x+\\ bar{x}) ) + f_0 \\ sin(\\ omega t)y_0
1353
+ \\ dot{v}_x &= -\\ gamma v_x - [ -4x(1-x^2) +y^2] + f_0 \\ sin(\\ omega t)x_0 \\\\
1354
+ \\ dot{v}_y &= -\\ gamma v_y - 2y (x+\\ bar{x}) + f_0 \\ sin(\\ omega t)y_0
1355
1355
\\ end{aligned}
1356
1356
```
1357
1357
This 5 dimensional (time-forced) dynamical system was used by Ott et al [^OttRiddled2014]
@@ -1393,14 +1393,14 @@ Pacific barnacle [^MorrisLecar1981]. Its evolution is given by:
1393
1393
```math
1394
1394
\\ begin{aligned}
1395
1395
\\ dot{V} &= -g_{Ca} M(V) (V - V_{Ca}) - g_K N (V - V_K) - g_L (V - V_L) + I \\\\
1396
- \\ dot{N} &= (1/ \t au) ( -N + G(V)) \\\\
1396
+ \\ dot{N} &= (-N + G(V)) / \t au \\\\
1397
1397
\\ end{aligned}
1398
1398
```
1399
1399
with
1400
1400
```math
1401
1401
\\ begin{aligned}
1402
- M(V) = 0.5 (1 + \t anh((x-V1)/V2)) \\\\
1403
- G(V) = 0.5 (1 + \t anh((x-V3)/V4)) \\\\
1402
+ M(V) = 0.5 (1 + \\ tanh((x-V1)/V2)) \\\\
1403
+ G(V) = 0.5 (1 + \\ tanh((x-V3)/V4)) \\\\
1404
1404
```
1405
1405
1406
1406
[^IzhikevichBook]:
@@ -2003,10 +2003,10 @@ function hyper_bao(u0 = [5.0, 8.0, 12.0, 21.0];
2003
2003
```
2004
2004
```math
2005
2005
\\ begin{aligned}
2006
- \\ dot{x} &= a* (y - x) + w\\\\
2007
- \\ dot{y} &= c* y - x* z\\\\
2008
- \\ dot{z} &= x* y - b* z\\\\
2009
- \\ dot{w} &= k* x - d*y* z
2006
+ \\ dot{x} &= a (y - x) + w\\\\
2007
+ \\ dot{y} &= c y - x z\\\\
2008
+ \\ dot{z} &= x y - b z\\\\
2009
+ \\ dot{w} &= k x - d y z
2010
2010
\\ end{aligned}
2011
2011
```
2012
2012
A system showchasing hyperchaos obtained from the Lu system[^Bo-Cheng2008].
@@ -2046,10 +2046,10 @@ function hyper_cai(u0 = [1.0, 1.0, 20.0, 10.0];
2046
2046
```
2047
2047
```math
2048
2048
\\ begin{aligned}
2049
- \\ dot{x} &= a* (y - x)\\\\
2050
- \\ dot{y} &= b* x + c* y - x* z + w\\\\
2051
- \\ dot{z} &= -d* z + y^2\\\\
2052
- \\ dot{w} &= -e* x
2049
+ \\ dot{x} &= a (y - x)\\\\
2050
+ \\ dot{y} &= b x + c y - x z + w\\\\
2051
+ \\ dot{z} &= -d z + y^2\\\\
2052
+ \\ dot{w} &= -e x
2053
2053
\\ end{aligned}
2054
2054
```
2055
2055
A system showchasing hyperchaos obtained from the Finance system[^Cai2007].
@@ -2088,10 +2088,10 @@ function hyper_lu(u0 = [5.0, 8.0, 12.0, 21.0];
2088
2088
```
2089
2089
```math
2090
2090
\\ begin{aligned}
2091
- \\ dot{x} &= a* (y - x) + w\\\\
2092
- \\ dot{y} &= c* y - x* z\\\\
2093
- \\ dot{z} &= x* y - b* z\\\\
2094
- \\ dot{w} &= d* w + x* z
2091
+ \\ dot{x} &= a (y - x) + w\\\\
2092
+ \\ dot{y} &= c y - x z\\\\
2093
+ \\ dot{z} &= x y - b z\\\\
2094
+ \\ dot{w} &= d w + x z
2095
2095
\\ end{aligned}
2096
2096
```
2097
2097
A system showchasing hyperchaos obtained from the Lu system[^Chen2006].
@@ -2129,10 +2129,10 @@ function hyper_pang(u0 = [1.0, 1.0, 10.0, 1.0];
2129
2129
```
2130
2130
```math
2131
2131
\\ begin{aligned}
2132
- \\ dot{x} &= a* (y - x)\\\\
2133
- \\ dot{y} &= -x* z + c* y + w\\\\
2134
- \\ dot{z} &= x* y - b* z\\\\
2135
- \\ dot{w} &= -d* x - d* y
2132
+ \\ dot{x} &= a (y - x)\\\\
2133
+ \\ dot{y} &= -x z + c y + w\\\\
2134
+ \\ dot{z} &= x y - b z\\\\
2135
+ \\ dot{w} &= -d x - d y
2136
2136
\\ end{aligned}
2137
2137
```
2138
2138
A system showchasing hyperchaos obtained from the Lu system[^Pang2011].
0 commit comments