733733```
734734Thomas' cyclically symmetric attractor is a 3D strange attractor originally proposed
735735by René Thomas[^Thomas1999]. It has a simple form which is cyclically symmetric in the
736- x,y, and z variables and can be viewed as the trajectory of a frictionally dampened
736+ x, y, and z variables and can be viewed as the trajectory of a frictionally dampened
737737particle moving in a 3D lattice of forces.
738738For more see the [Wikipedia page](https://en.wikipedia.org/wiki/Thomas%27_cyclically_symmetric_attractor).
739739
@@ -1009,7 +1009,7 @@ hodgkinhuxley(u0=[-60.0, 0.0, 0.0, 0.0]; I = 12.0, Vna = 50.0, Vk = -77.0, Vl =
10091009```
10101010```math
10111011\\ begin{aligned}
1012- C_m \\ frac{dV_m}{dt} = -\\ overline{g}_\\ mathrm{K} n^4 (V_m - V_\\ mathrm{K}) - \\ overline{g}_\\ mathrm{Na} m^3 h(V_m - V_\\ mathrm{Na}) - \\ overline{g}_l (V_m - Vl) + I\\\\
1012+ C_m \\ frac{dV_m}{dt} & = -\\ overline{g}_\\ mathrm{K} n^4 (V_m - V_\\ mathrm{K}) - \\ overline{g}_\\ mathrm{Na} m^3 h(V_m - V_\\ mathrm{Na}) - \\ overline{g}_l (V_m - Vl) + I\\\\
10131013\\ dot{n} &= \\ alpha_n(V_m)(1-n) - \\ beta_n(V_m)n \\\\
10141014\\ dot{m} &= \\ alpha_m(V_m)(1-m) - \\ beta_m(V_m)m \\\\
10151015\\ dot{h} &= \\ alpha_h(V_m)(1-h) - \\ beta_h(V_m)h \\\\
@@ -1076,7 +1076,7 @@ vanderpol(u0=[0.5, 0.0]; μ=1.5, F=1.2, T=10) -> ds
10761076```
10771077```math
10781078\\ begin{aligned}
1079- \\ ddot{x} -\\ mu (1-x^2) \\ dot{x} + x = F \\ cos(\\ frac{ 2\\ pi t}{T} )
1079+ \\ ddot{x} -\\ mu (1-x^2) \\ dot{x} + x = F \\ cos(2\\ pi t / T )
10801080\\ end{aligned}
10811081```
10821082The forced van der Pol oscillator is an oscillator with a nonlinear damping term driven
@@ -1091,7 +1091,7 @@ additionally have chaotic behavior.
10911091The van der Pol oscillator is a specific case of both the FitzHugh-Nagumo neural
10921092model [^Kanamaru2007]. The default damping parameter is taken from [^Strogatz2015]
10931093and the forcing parameters are taken from [^Kanamaru2007], which generate periodic
1094- oscillations. Setting `\\ mu=8.53` generates chaotic oscillations.
1094+ oscillations. Setting `` \\ mu=8.53` ` generates chaotic oscillations.
10951095
10961096[^Kanamaru2007]: Takashi Kanamaru (2007) "Van der Pol oscillator", Scholarpedia, 2(1):2202.
10971097
@@ -1277,7 +1277,7 @@ It can be written in cartesian coordinates as [^Deco2017]
12771277```
12781278
12791279The dynamical analysis of the system is greatly facilitated by putting it in polar coordinates,
1280- where it becomes the normal form of the supercritical Hopf bifurcation) [^Strogatz2015].
1280+ where it takes the normal form of the supercritical Hopf bifurcation) [^Strogatz2015].
12811281```math
12821282\\ begin{aligned}
12831283\\ dot{r} &= \\ mu r - r^3, \\\\
@@ -1350,8 +1350,8 @@ riddled_basins(u0=[0.5, 0.6, 0, 0]; γ=0.05, x̄ = 1.9, f₀=2.3, ω =3.5, x₀=
13501350```math
13511351\\ begin{aligned}
13521352\\ dot{x} &= v_x, \\ quad \\ dot{y} = v_z \\\\
1353- \\ dot{v}_x &= -\\ gamma v_x - ( -4x(1-x^2) +y^2) + f_0 \\ sin(\\ omega t)x_0 \\\\
1354- \\ dot{v}_y &= -\\ gamma v_y - (2y (x+\\ bar{x}) ) + f_0 \\ sin(\\ omega t)y_0
1353+ \\ dot{v}_x &= -\\ gamma v_x - [ -4x(1-x^2) +y^2] + f_0 \\ sin(\\ omega t)x_0 \\\\
1354+ \\ dot{v}_y &= -\\ gamma v_y - 2y (x+\\ bar{x}) + f_0 \\ sin(\\ omega t)y_0
13551355\\ end{aligned}
13561356```
13571357This 5 dimensional (time-forced) dynamical system was used by Ott et al [^OttRiddled2014]
@@ -1393,14 +1393,14 @@ Pacific barnacle [^MorrisLecar1981]. Its evolution is given by:
13931393```math
13941394\\ begin{aligned}
13951395\\ dot{V} &= -g_{Ca} M(V) (V - V_{Ca}) - g_K N (V - V_K) - g_L (V - V_L) + I \\\\
1396- \\ dot{N} &= (1/ \t au) ( -N + G(V)) \\\\
1396+ \\ dot{N} &= (-N + G(V)) / \t au \\\\
13971397\\ end{aligned}
13981398```
13991399with
14001400```math
14011401\\ begin{aligned}
1402- M(V) = 0.5 (1 + \t anh((x-V1)/V2)) \\\\
1403- G(V) = 0.5 (1 + \t anh((x-V3)/V4)) \\\\
1402+ M(V) = 0.5 (1 + \\ tanh((x-V1)/V2)) \\\\
1403+ G(V) = 0.5 (1 + \\ tanh((x-V3)/V4)) \\\\
14041404```
14051405
14061406[^IzhikevichBook]:
@@ -2003,10 +2003,10 @@ function hyper_bao(u0 = [5.0, 8.0, 12.0, 21.0];
20032003```
20042004```math
20052005\\ begin{aligned}
2006- \\ dot{x} &= a* (y - x) + w\\\\
2007- \\ dot{y} &= c* y - x* z\\\\
2008- \\ dot{z} &= x* y - b* z\\\\
2009- \\ dot{w} &= k* x - d*y* z
2006+ \\ dot{x} &= a (y - x) + w\\\\
2007+ \\ dot{y} &= c y - x z\\\\
2008+ \\ dot{z} &= x y - b z\\\\
2009+ \\ dot{w} &= k x - d y z
20102010\\ end{aligned}
20112011```
20122012A system showchasing hyperchaos obtained from the Lu system[^Bo-Cheng2008].
@@ -2046,10 +2046,10 @@ function hyper_cai(u0 = [1.0, 1.0, 20.0, 10.0];
20462046```
20472047```math
20482048\\ begin{aligned}
2049- \\ dot{x} &= a* (y - x)\\\\
2050- \\ dot{y} &= b* x + c* y - x* z + w\\\\
2051- \\ dot{z} &= -d* z + y^2\\\\
2052- \\ dot{w} &= -e* x
2049+ \\ dot{x} &= a (y - x)\\\\
2050+ \\ dot{y} &= b x + c y - x z + w\\\\
2051+ \\ dot{z} &= -d z + y^2\\\\
2052+ \\ dot{w} &= -e x
20532053\\ end{aligned}
20542054```
20552055A system showchasing hyperchaos obtained from the Finance system[^Cai2007].
@@ -2088,10 +2088,10 @@ function hyper_lu(u0 = [5.0, 8.0, 12.0, 21.0];
20882088```
20892089```math
20902090\\ begin{aligned}
2091- \\ dot{x} &= a* (y - x) + w\\\\
2092- \\ dot{y} &= c* y - x* z\\\\
2093- \\ dot{z} &= x* y - b* z\\\\
2094- \\ dot{w} &= d* w + x* z
2091+ \\ dot{x} &= a (y - x) + w\\\\
2092+ \\ dot{y} &= c y - x z\\\\
2093+ \\ dot{z} &= x y - b z\\\\
2094+ \\ dot{w} &= d w + x z
20952095\\ end{aligned}
20962096```
20972097A system showchasing hyperchaos obtained from the Lu system[^Chen2006].
@@ -2129,10 +2129,10 @@ function hyper_pang(u0 = [1.0, 1.0, 10.0, 1.0];
21292129```
21302130```math
21312131\\ begin{aligned}
2132- \\ dot{x} &= a* (y - x)\\\\
2133- \\ dot{y} &= -x* z + c* y + w\\\\
2134- \\ dot{z} &= x* y - b* z\\\\
2135- \\ dot{w} &= -d* x - d* y
2132+ \\ dot{x} &= a (y - x)\\\\
2133+ \\ dot{y} &= -x z + c y + w\\\\
2134+ \\ dot{z} &= x y - b z\\\\
2135+ \\ dot{w} &= -d x - d y
21362136\\ end{aligned}
21372137```
21382138A system showchasing hyperchaos obtained from the Lu system[^Pang2011].
0 commit comments