1
- const DDS = DynamicalSystemsBase. DiscreteDynamicalSystem
2
-
3
1
"""
4
2
```julia
5
3
towel(u0 = [0.085, -0.121, 0.075])
@@ -23,7 +21,7 @@ Default values are the ones used in the original paper.
23
21
[1] : O. E. Rössler, Phys. Lett. **71A**, pp 155 (1979)
24
22
"""
25
23
function towel (u0= [0.085 , - 0.121 , 0.075 ])
26
- return DDS (towel_rule, u0, nothing )
24
+ return DeterministicIteratedMap (towel_rule, u0, nothing )
27
25
end # should result in lyapunovs: [0.432207,0.378834,-3.74638]
28
26
function towel_rule (x, p, n)
29
27
@inbounds x1, x2, x3 = x[1 ], x[2 ], x[3 ]
@@ -72,7 +70,7 @@ Nuclear Physics, Novosibirsk (1969)
72
70
[2] : J. M. Greene, J. Math. Phys. **20**, pp 1183 (1979)
73
71
"""
74
72
function standardmap (u0= [0.001245 , 0.00875 ]; k = 0.971635 )
75
- return DDS (standardmap_rule, u0, [k])
73
+ return DeterministicIteratedMap (standardmap_rule, u0, [k])
76
74
end
77
75
@inbounds function standardmap_rule (x, par, n)
78
76
theta = x[1 ]; p = x[2 ]
@@ -132,7 +130,7 @@ function coupledstandardmaps(M::Int, u0 = 0.001rand(2M);
132
130
sparseJ = sparse (J)
133
131
p = vcat (ks, Γ)
134
132
csm (sparseJ, u0, p, 0 )
135
- return DDS (csm, u0, p, csm, sparseJ)
133
+ return DeterministicIteratedMap (csm, u0, p, csm, sparseJ)
136
134
end
137
135
struct CoupledStandardMaps{N}
138
136
idxs:: SVector{N, Int}
@@ -198,7 +196,7 @@ function's documentation string.
198
196
[1] : M. Hénon, Commun.Math. Phys. **50**, pp 69 (1976)
199
197
"""
200
198
function henon (u0= zeros (2 ); a = 1.4 , b = 0.3 )
201
- return DDS (henon_rule, u0, [a,b])
199
+ return DeterministicIteratedMap (henon_rule, u0, [a,b])
202
200
end # should give lyapunov exponents [0.4189, -1.6229]
203
201
henon_rule (x, p, n) = SVector {2} (1.0 - p[1 ]* x[1 ]^ 2 + x[2 ], p[2 ]* x[1 ])
204
202
henon_jacob (x, p, n) = SMatrix {2,2} (- 2 * p[1 ]* x[1 ], p[2 ], 1.0 , 0.0 )
@@ -226,7 +224,7 @@ function's documentation string.
226
224
[2] : M. J. Feigenbaum, J. Stat. Phys. **19**, pp 25 (1978)
227
225
"""
228
226
function logistic (x0= 0.4 ; r = 4.0 )
229
- return DDS (logistic_rule, SVector (x0), [r])
227
+ return DeterministicIteratedMap (logistic_rule, SVector (x0), [r])
230
228
end
231
229
logistic_rule (x, p, n) = @inbounds SVector (p[1 ]* x[1 ]* (1 - x[1 ]))
232
230
logistic_jacob (x, p, n) = @inbounds SMatrix {1,1} (p[1 ]* (1 - 2 x[1 ]))
@@ -252,7 +250,7 @@ x_n(1 + |2x_n|^{z-1}), & \\quad |x_n| \\le 0.5 \\\\
252
250
[2] : Meyer et al., New. J. Phys **20** (2019)
253
251
"""
254
252
function pomeau_manneville (u0 = 0.2 , z = 2.5 )
255
- return DDS (pm_rule, u0, [z], pm_jac)
253
+ return DeterministicIteratedMap (pm_rule, u0, [z], pm_jac)
256
254
end
257
255
function pm_rule (x, p, n)
258
256
if x < - 0.5
@@ -290,7 +288,7 @@ function's documentation string.
290
288
[^Manneville1980]: Manneville, P. (1980). Intermittency, self-similarity and 1/f spectrum in dissipative dynamical systems. [Journal de Physique, 41(11), 1235–1243](https://doi.org/10.1051/jphys:0198000410110123500)
291
289
"""
292
290
function manneville_simple (x0= 0.4 ; ε = 0.1 )
293
- return DDS (manneville_f, x0, [ε], manneville_j)
291
+ return DeterministicIteratedMap (manneville_f, x0, [ε], manneville_j)
294
292
end
295
293
296
294
function manneville_f (x, p, t)
@@ -313,7 +311,7 @@ Vladimir Arnold in the 1960s. [1]
313
311
[1] : Arnol'd, V. I., & Avez, A. (1968). Ergodic problems of classical mechanics.
314
312
"""
315
313
function arnoldcat (u0 = [0.001245 , 0.00875 ])
316
- return DDS (arnoldcat_rule, u0, nothing , arnoldcat_jacob)
314
+ return DeterministicIteratedMap (arnoldcat_rule, u0, nothing , arnoldcat_jacob)
317
315
end # Should give Lyapunov exponents [2.61803, 0.381966]
318
316
function arnoldcat_rule (u, p, n)
319
317
x,y = u
@@ -345,7 +343,7 @@ This map illustrate the fractalization of the basins boundary and its uncertaint
345
343
An obstruction to predictability, Physics Letters A, 99, 9, 1983
346
344
"""
347
345
function grebogi_map (u0 = [0.2 , 0. ]; a = 1.32 , b= 0.9 , J₀= 0.3 )
348
- return DDS (grebogi_map_rule, u0, [a,b,J₀], grebogi_map_J)
346
+ return DeterministicIteratedMap (grebogi_map_rule, u0, [a,b,J₀], grebogi_map_J)
349
347
end
350
348
function grebogi_map_rule (u, p, n)
351
349
θ = u[1 ]; x = u[2 ]
@@ -375,7 +373,7 @@ u_i' = \\lambda - u_i^2 + k \\sum_{j\\ne i} (u_j^2 - u_i^2)
375
373
Here the prime ``'`` denotes next state.
376
374
"""
377
375
function nld_coupled_logistic_maps (D = 4 , u0 = range (0 , 1 ; length= D); λ = 1.2 , k = 0.08 )
378
- return DDS (nld_coupled_logistic_maps_f, u0, [λ, k])
376
+ return DeterministicIteratedMap (nld_coupled_logistic_maps_f, u0, [λ, k])
379
377
end
380
378
381
379
function nld_coupled_logistic_maps_f (du, u, p, n)
@@ -409,7 +407,7 @@ The parameter μ should be kept in the interval `[0,2]`. At μ=2, the tent map c
409
407
[^Ott2002] : E. Ott, "Chaos in Dynamical Systems" (2nd ed.) Cambridge: Cambridge University Press (2010).
410
408
"""
411
409
function tentmap (u0 = 0.25 , μ = 2.0 )
412
- return DDS (tentmap_rule, u0, [μ], tentmap_jac)
410
+ return DeterministicIteratedMap (tentmap_rule, u0, [μ], tentmap_jac)
413
411
end
414
412
function tentmap_rule (x, p, n)
415
413
μ = p[1 ]
@@ -442,7 +440,7 @@ The parameter β controls the dynamics of the map. Its Lyapunov exponent can be
442
440
At β=2, it becomes the dyadic transformation, also known as the bit shift map, the 2x mod 1 map, the Bernoulli map or the sawtooth map. The typical trajectory for this case is chaotic, though there are countably infinite periodic orbits [^Ott2002].
443
441
"""
444
442
function betatransformationmap (u0 = 0.25 ; β= 2.0 )
445
- return DDS (betatransformation_rule, u0, [β], betatransformation_jac)
443
+ return DeterministicIteratedMap (betatransformation_rule, u0, [β], betatransformation_jac)
446
444
end
447
445
function betatransformation_rule (x, p, n)
448
446
@inbounds β = p[1 ]
@@ -478,7 +476,7 @@ The parameters σ and β are generally kept at `0.001`, while α is chosen to g
478
476
[^Cao2013] : H. Cao and Y Wu, "Bursting types and stable domains of Rulkov neuron network with mean field coupling", International Journal of Bifurcation and Chaos,23:1330041 (2013).
479
477
"""
480
478
function rulkovmap (u0= [1.0 , 1.0 ]; α= 4.1 , β= 0.001 , σ= 0.001 )
481
- return DDS (rulkovmap_rule, u0, [α, β, σ], rulkovmap_jac)
479
+ return DeterministicIteratedMap (rulkovmap_rule, u0, [α, β, σ], rulkovmap_jac)
482
480
end
483
481
@inbounds function rulkovmap_rule (x, p, n)
484
482
α, β, σ = p
@@ -509,7 +507,7 @@ The default parameters are chosen to give a unique chaotic attractor. A double a
509
507
[^Skiadas2008] : "Chaotic Modelling and Simulation: Analysis of Chaotic Models, Attractors and Forms", CRC Press (2008).
510
508
"""
511
509
function ikedamap (u0= [1.0 , 1.0 ]; a= 1.0 , b= 1.0 , c= 0.4 , d = 6.0 )
512
- return DDS (ikedamap_rule, u0, [a,b,c,d], ikedamap_jac)
510
+ return DeterministicIteratedMap (ikedamap_rule, u0, [a,b,c,d], ikedamap_jac)
513
511
end
514
512
@inbounds function ikedamap_rule (u, p, n)
515
513
a,b,c,d = p
0 commit comments