@@ -114,71 +114,71 @@ end
114
114
115
115
function LinearAlgebra. eigen (A:: Symmetric{T,<:CuMatrix} ) where {T<: BlasReal }
116
116
A2 = copy (A. data)
117
- Eigen (syevd! (' V' , ' U' , A2)... )
117
+ return Eigen (syevd! (' V' , ' U' , A2)... )
118
118
end
119
119
function LinearAlgebra. eigen (A:: Hermitian{T,<:CuMatrix} ) where {T<: BlasComplex }
120
120
A2 = copy (A. data)
121
- Eigen (heevd! (' V' , ' U' , A2)... )
121
+ return Eigen (heevd! (' V' , ' U' , A2)... )
122
122
end
123
123
function LinearAlgebra. eigen (A:: Hermitian{T,<:CuMatrix} ) where {T<: BlasReal }
124
- eigen (Symmetric (A))
124
+ return eigen (Symmetric (A))
125
125
end
126
126
127
127
function LinearAlgebra. eigen (A:: CuMatrix{T} ) where {T<: BlasReal }
128
128
A2 = copy (A)
129
129
r = Xgeev! (' N' , ' V' , A2)
130
- Eigen (r[1 ], r[3 ])
130
+ return Eigen (r[1 ], r[3 ])
131
131
end
132
132
function LinearAlgebra. eigen (A:: CuMatrix{T} ) where {T<: BlasComplex }
133
133
A2 = copy (A)
134
134
r = Xgeev! (' N' , ' V' , A2)
135
- Eigen (r[1 ], r[3 ])
135
+ return Eigen (r[1 ], r[3 ])
136
136
end
137
137
138
138
# eigvals
139
139
140
- function LinearAlgebra. eigvals (A:: Symmetric{T,<:CuMatrix} ) where {T<: BlasReal }
140
+ function LinearAlgebra. eigvals (A:: Symmetric{T, <:CuMatrix} ) where {T <: BlasReal }
141
141
A2 = copy (A. data)
142
- syevd! (' N' , ' U' , A2)[1 ]
142
+ return syevd! (' N' , ' U' , A2)[1 ]
143
143
end
144
- function LinearAlgebra. eigvals (A:: Hermitian{T,<:CuMatrix} ) where {T<: BlasComplex }
144
+ function LinearAlgebra. eigvals (A:: Hermitian{T, <:CuMatrix} ) where {T <: BlasComplex }
145
145
A2 = copy (A. data)
146
- heevd! (' N' , ' U' , A2)[1 ]
146
+ return heevd! (' N' , ' U' , A2)[1 ]
147
147
end
148
- function LinearAlgebra. eigvals (A:: Hermitian{T,<:CuMatrix} ) where {T<: BlasReal }
149
- eigvals (Symmetric (A))
148
+ function LinearAlgebra. eigvals (A:: Hermitian{T, <:CuMatrix} ) where {T <: BlasReal }
149
+ return eigvals (Symmetric (A))
150
150
end
151
151
152
- function LinearAlgebra. eigvals (A:: CuMatrix{T} ) where {T<: BlasReal }
152
+ function LinearAlgebra. eigvals (A:: CuMatrix{T} ) where {T <: BlasReal }
153
153
A2 = copy (A)
154
- Xgeev! (' N' , ' N' , A2)[1 ]
154
+ return Xgeev! (' N' , ' N' , A2)[1 ]
155
155
end
156
- function LinearAlgebra. eigvals (A:: CuMatrix{T} ) where {T<: BlasComplex }
156
+ function LinearAlgebra. eigvals (A:: CuMatrix{T} ) where {T <: BlasComplex }
157
157
A2 = copy (A)
158
- Xgeev! (' N' , ' N' , A2)[1 ]
158
+ return Xgeev! (' N' , ' N' , A2)[1 ]
159
159
end
160
160
161
161
# eigvecs
162
162
163
- function LinearAlgebra. eigvecs (A:: Symmetric{T,<:CuMatrix} ) where {T<: BlasReal }
163
+ function LinearAlgebra. eigvecs (A:: Symmetric{T, <:CuMatrix} ) where {T <: BlasReal }
164
164
A2 = copy (A. data)
165
- syevd! (' V' , ' U' , A2)[2 ]
165
+ return syevd! (' V' , ' U' , A2)[2 ]
166
166
end
167
- function LinearAlgebra. eigvecs (A:: Hermitian{T,<:CuMatrix} ) where {T<: BlasComplex }
167
+ function LinearAlgebra. eigvecs (A:: Hermitian{T, <:CuMatrix} ) where {T <: BlasComplex }
168
168
A2 = copy (A. data)
169
- heevd! (' V' , ' U' , A2)[2 ]
169
+ return heevd! (' V' , ' U' , A2)[2 ]
170
170
end
171
- function LinearAlgebra. eigvecs (A:: Hermitian{T,<:CuMatrix} ) where {T<: BlasReal }
172
- eigvals (Symmetric (A))
171
+ function LinearAlgebra. eigvecs (A:: Hermitian{T, <:CuMatrix} ) where {T <: BlasReal }
172
+ return eigvals (Symmetric (A))
173
173
end
174
174
175
- function LinearAlgebra. eigvecs (A:: CuMatrix{T} ) where {T<: BlasReal }
175
+ function LinearAlgebra. eigvecs (A:: CuMatrix{T} ) where {T <: BlasReal }
176
176
A2 = copy (A)
177
- Xgeev! (' N' , ' V' , A2)[3 ]
177
+ return Xgeev! (' N' , ' V' , A2)[3 ]
178
178
end
179
- function LinearAlgebra. eigvecs (A:: CuMatrix{T} ) where {T<: BlasComplex }
179
+ function LinearAlgebra. eigvecs (A:: CuMatrix{T} ) where {T <: BlasComplex }
180
180
A2 = copy (A)
181
- Xgeev! (' N' , ' V' , A2)[3 ]
181
+ return Xgeev! (' N' , ' V' , A2)[3 ]
182
182
end
183
183
184
184
# factorizations
0 commit comments