|
| 1 | +using KernelAbstractions |
| 2 | +using StaticArrays |
| 3 | +using Test |
| 4 | + |
| 5 | +const TILE_DIM = 32 |
| 6 | + |
| 7 | +@kernel function coalesced_matmul_kernel!(output, @Const(input1), @Const(input2), N, R, M, |
| 8 | + ::Val{BANK}=Val(1)) where BANK |
| 9 | + gi, gj = @index(Group, NTuple) |
| 10 | + i, j = @index(Local, NTuple) |
| 11 | + |
| 12 | + TILE_DIM = @uniform groupsize()[1] |
| 13 | + |
| 14 | + # +1 to avoid bank conflicts on shared memory |
| 15 | + tile1 = @localmem eltype(output) (TILE_DIM+BANK, TILE_DIM) |
| 16 | + tile2 = @localmem eltype(output) (TILE_DIM+BANK, TILE_DIM) |
| 17 | + |
| 18 | + # private variable for tile output |
| 19 | + outval = @private eltype(output) 1 |
| 20 | + @inbounds outval[1] = -zero(eltype(output)) |
| 21 | + |
| 22 | + @uniform N = size(output, 1) |
| 23 | + # number of tiles depends on inner dimension |
| 24 | + @uniform NUM_TILES = div(R + TILE_DIM - 1, TILE_DIM) |
| 25 | + |
| 26 | + # loop over all tiles needed for this calculation |
| 27 | + for t in 0:NUM_TILES-1 |
| 28 | + # Can't use @index(Global), because we use a smaller ndrange |
| 29 | + I = (gi-1) * TILE_DIM + i |
| 30 | + J = (gj-1) * TILE_DIM + j |
| 31 | + |
| 32 | + # load inputs into tiles, with bounds checking for non-square matrices |
| 33 | + if I <= N && t*TILE_DIM + j <= R |
| 34 | + @inbounds tile1[i, j] = input1[I, t*TILE_DIM + j] |
| 35 | + else |
| 36 | + @inbounds tile1[i, j] = 0.0 |
| 37 | + end |
| 38 | + if t*TILE_DIM + i <= R && J <= M |
| 39 | + @inbounds tile2[i, j] = input2[t*TILE_DIM + i, J] |
| 40 | + else |
| 41 | + @inbounds tile2[i, j] = 0.0 |
| 42 | + end |
| 43 | + |
| 44 | + # wait for all tiles to be loaded |
| 45 | + @synchronize |
| 46 | + |
| 47 | + # get global values again |
| 48 | + I = (gi-1) * TILE_DIM + i |
| 49 | + J = (gj-1) * TILE_DIM + j |
| 50 | + |
| 51 | + # calculate value of spot in output, use temporary value to allow for vectorization |
| 52 | + out = zero(eltype(output)) |
| 53 | + @simd for k in 1:TILE_DIM |
| 54 | + @inbounds out += tile1[i, k] * tile2[k, j] |
| 55 | + end |
| 56 | + outval[1] += out |
| 57 | + |
| 58 | + @synchronize |
| 59 | + end |
| 60 | + |
| 61 | + # get global indices again |
| 62 | + I = (gi-1) * TILE_DIM + i |
| 63 | + J = (gj-1) * TILE_DIM + j |
| 64 | + |
| 65 | + # save if inbounds |
| 66 | + if I <= N && J <= M |
| 67 | + @inbounds output[I, J] = outval[1] |
| 68 | + end |
| 69 | +end |
| 70 | + |
| 71 | +N = 1024 |
| 72 | +R = 512 |
| 73 | +M = 2048 |
| 74 | +A = rand(N, R) |
| 75 | +B = rand(R, M) |
| 76 | +C = zeros(N, M) |
| 77 | + |
| 78 | +kern = coalesced_matmul_kernel!(CPU(), (TILE_DIM, TILE_DIM)) |
| 79 | + |
| 80 | + |
| 81 | +wait(kern(C, A, B, N, R, M, ndrange=size(C))) |
| 82 | +@test isapprox(A*B, C) |
0 commit comments