|
| 1 | +using KernelAbstractions |
| 2 | +using CUDAapi |
| 3 | + |
| 4 | +CUDAapi.has_cuda_gpu() || exit() |
| 5 | + |
| 6 | +using CuArrays |
| 7 | +using CUDAdrv |
| 8 | +using CUDAnative |
| 9 | +using CUDAnative.NVTX |
| 10 | + |
| 11 | +@kernel function transpose_kernel_naive!(b, a) |
| 12 | + I = @index(Global, Cartesian) |
| 13 | + i, j = I.I |
| 14 | + @inbounds b[i, j] = a[j, i] |
| 15 | +end |
| 16 | + |
| 17 | +const block_dim = 32 |
| 18 | +const grid_dim = 256 |
| 19 | + |
| 20 | +@kernel function transpose_kernel!(b, a) |
| 21 | + block_dim_x, block_dim_y = block_dim, block_dim |
| 22 | + grid_dim_x, grid_dim_y = grid_dim, grid_dim |
| 23 | + |
| 24 | + wgsize = prod(groupsize()) |
| 25 | + |
| 26 | + I = @index(Global) |
| 27 | + L = @index(Local) |
| 28 | + G = div(I - 1, wgsize) + 1 |
| 29 | + |
| 30 | + thread_idx_x = (L - 1) % block_dim_x + 1 |
| 31 | + thread_idx_y = div(L - 1, block_dim_x) + 1 |
| 32 | + |
| 33 | + block_idx_x = (G - 1) % grid_dim_x + 1 |
| 34 | + block_idx_y = div(G - 1, grid_dim_x) + 1 |
| 35 | + |
| 36 | + i = (block_idx_x - 1) * block_dim_x + thread_idx_x |
| 37 | + j = (block_idx_y - 1) * block_dim_y + thread_idx_y |
| 38 | + |
| 39 | + @inbounds b[i + size(b, 1) * (j - 1)] = a[j + size(a, 1) * (i - 1)] |
| 40 | +end |
| 41 | + |
| 42 | +const T = Float32 |
| 43 | +const N = grid_dim * block_dim |
| 44 | +const shape = N, N |
| 45 | +const nreps = 10 |
| 46 | + |
| 47 | +NVTX.@range "Naive transpose $block_dim, $block_dim" let |
| 48 | + a = CuArray(rand(T, shape)) |
| 49 | + b = similar(a, shape[2], shape[1]) |
| 50 | + kernel! = transpose_kernel_naive!(CUDA(), (block_dim, block_dim), size(b)) |
| 51 | + |
| 52 | + event = kernel!(b, a) |
| 53 | + wait(event) |
| 54 | + @assert Array(b) == Array(a)' |
| 55 | + @CUDAdrv.profile begin |
| 56 | + for rep in 1:nreps |
| 57 | + event = kernel!(b, a, dependencies=(event,)) |
| 58 | + end |
| 59 | + wait(event) |
| 60 | + end |
| 61 | +end |
| 62 | + |
| 63 | +NVTX.@range "Naive transpose $(block_dim^2), 1" let |
| 64 | + a = CuArray(rand(T, shape)) |
| 65 | + b = similar(a, shape[2], shape[1]) |
| 66 | + kernel! = transpose_kernel_naive!(CUDA(), (block_dim*block_dim, 1), size(b)) |
| 67 | + |
| 68 | + event = kernel!(b, a) |
| 69 | + wait(event) |
| 70 | + @assert Array(b) == Array(a)' |
| 71 | + @CUDAdrv.profile begin |
| 72 | + for rep in 1:nreps |
| 73 | + event = kernel!(b, a, dependencies=(event,)) |
| 74 | + end |
| 75 | + wait(event) |
| 76 | + end |
| 77 | +end |
| 78 | + |
| 79 | +NVTX.@range "Naive transpose 1, $(block_dim^2)" let |
| 80 | + a = CuArray(rand(T, shape)) |
| 81 | + b = similar(a, shape[2], shape[1]) |
| 82 | + kernel! = transpose_kernel_naive!(CUDA(), (1, blockdim*block_dim), size(b)) |
| 83 | + |
| 84 | + event = kernel!(b, a) |
| 85 | + wait(event) |
| 86 | + @assert Array(b) == Array(a)' |
| 87 | + @CUDAdrv.profile begin |
| 88 | + for rep in 1:nreps |
| 89 | + event = kernel!(b, a, dependencies=(event,)) |
| 90 | + end |
| 91 | + wait(event) |
| 92 | + end |
| 93 | +end |
| 94 | + |
| 95 | +NVTX.@range "Baseline transpose" let |
| 96 | + a = CuArray(rand(T, shape)) |
| 97 | + b = similar(a, shape[2], shape[1]) |
| 98 | + |
| 99 | + kernel! = transpose_kernel!(CUDA(), (block_dim*block_dim), length(b)) |
| 100 | + |
| 101 | + event = kernel!(b, a) |
| 102 | + wait(event) |
| 103 | + @assert Array(b) == Array(a)' |
| 104 | + @CUDAdrv.profile begin |
| 105 | + for rep in 1:nreps |
| 106 | + event = kernel!(b, a, dependencies=(event,)) |
| 107 | + end |
| 108 | + wait(event) |
| 109 | + end |
| 110 | +end |
| 111 | + |
0 commit comments