Skip to content

amd gpu give different results when nested loop is used #517

@ww1g11

Description

@ww1g11

Hi, I noticed that the following script produces different results depending on the backend. On my machine, the output is:

cpu: [18.0; 18.0; 18.0; 18.0; 18.0; 18.0; 18.0; 18.0; 18.0; 18.0;;;]
cuda: [18.0; 18.0; 18.0; 18.0; 18.0; 18.0; 18.0; 18.0; 18.0; 18.0;;;]
amd: [6.0; 6.0; 6.0; 6.0; 6.0; 6.0; 6.0; 6.0; 6.0; 6.0;;;]

Is there a mistake in the kernel function?

using CUDA
using AMDGPU
using KernelAbstractions

function compute_tensors(tensor, kernel_fun, Nx, Ny, Nz)
    kernel! = kernel_fun(get_backend(tensor), 512)
    kernel!(tensor, Nx, Ny, Nz; ndrange=size(tensor))
    KernelAbstractions.synchronize(get_backend(tensor))
    return nothing
end

@kernel function kernel_xx!(tensor, Nx::Int64, Ny::Int64, Nz::Int64)
    i, j, k = @index(Global, NTuple)
    sum = zero(eltype(tensor))
    for p in (-Nx):Nx, q in (-Ny):Ny
        sum += 2.0
    end
    @inbounds tensor[i, j, k] = sum
end

nx, ny, nz = 10, 1, 1
Nx, Ny, Nz = 1, 1, 1
tensor = zeros(Float64, nx, ny, nz)
compute_tensors(tensor, kernel_xx!, Nx, Ny, Nz)
println("cpu:", tensor)

tensor = CUDA.zeros(Float64, nx, ny, nz)
compute_tensors(tensor, kernel_xx!, Nx, Ny, Nz)
println("cuda:", tensor)

tensor = AMDGPU.zeros(Float64, nx, ny, nz)
compute_tensors(tensor, kernel_xx!, Nx, Ny, Nz)
println("amd:", tensor)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions