@@ -53,25 +53,30 @@ pkg> add Metal
5353
5454Or, equivalently, via the ` Pkg `  API:
5555
56- ``` julia 
56+ ``` julia-repl  
5757julia> import Pkg; Pkg.add("Metal") 
5858``` 
5959
6060For an overview of the toolchain in use, you can run the following command after
6161importing the package:
6262
63- ``` julia 
63+ ``` julia-repl  
6464julia> using Metal 
6565
6666julia> Metal.versioninfo() 
67- macOS 14.5 .0 , Darwin 23.5 .0 
67+ macOS 15.0 .0, Darwin 24.0 .0 
6868
6969Toolchain: 
70- -  Julia:  1.10  . 4 
71- -  LLVM:  15 .0 .7 
70+ - Julia: 1.11.0  
71+ - LLVM: 16 .0.6  
7272
7373Julia packages: 
74- -  Metal. jl:  1.2 .0 
74+ - Metal.jl: 1.4.0 
75+ - GPUArrays: 10.3.1 
76+ - GPUCompiler: 0.27.8 
77+ - KernelAbstractions: 0.9.27 
78+ - ObjectiveC: 3.1.0 
79+ - LLVM: 9.1.2 
7580- LLVMDowngrader_jll: 0.3.0+1 
7681
77821 device: 
@@ -86,7 +91,7 @@ The `MtlArray` type is both meant to be a convenient container for device
8691memory, as well as provide a data-parallel abstraction for using the GPU
8792without writing your own kernels:
8893
89- ``` julia 
94+ ``` julia-repl  
9095julia> a = MtlArray([1]) 
91961-element MtlArray{Int64, 1}: 
9297 1 
@@ -105,7 +110,7 @@ GPU back-ends, and with that deviate from how kernels are implemented in Metal C
105110(i.e., indexing intrinsics are functions not arguments, arbitrary aggregate arguments
106111are supported, etc):
107112
108- ``` julia 
113+ ``` julia-repl  
109114julia> function vadd(a, b, c) 
110115           i = thread_position_in_grid_1d() 
111116           c[i] = a[i] + b[i] 
@@ -133,7 +138,7 @@ libraries through [ObjectiveC.jl](https://github.com/JuliaInterop/ObjectiveC.jl)
133138low-level API wrappers, along with some slightly higher-level Julia wrappers, are available
134139in the ` MTL `  submodule exported by Metal.jl:
135140
136- ``` julia 
141+ ``` julia-repl  
137142julia> dev = MTLDevice(1) 
138143<AGXG13XDevice: 0x14c17f200> 
139144    name = Apple M1 Pro 
0 commit comments