@@ -17,11 +17,12 @@ function TrajectoryGamesBase.solve_trajectory_game!(
1717
1818 θ = compose_parameter_vector(; initial_state, context, shared_constraint_premultipliers)
1919
20- raw_solution = ParametricMCPs. solve(
20+ raw_solution = IPMCPs. solve(
21+ IPMCPs. InteriorPoint(),
2122 solver. mcp_problem_representation,
2223 θ;
23- initial_guess = isnothing(initial_guess) ?
24- generate_initial_guess(solver, game, initial_state) : initial_guess,
24+ # initial_guess = isnothing(initial_guess) ?
25+ # generate_initial_guess(solver, game, initial_state) : initial_guess,
2526 parametric_mcp_solve_options... ,
2627 )
2728
@@ -33,7 +34,8 @@ Reshapes the raw solution into a `JointStrategy` over `OpenLoopStrategy`s.
3334"""
3435function strategy_from_raw_solution(; raw_solution, game, solver)
3536 number_of_players = num_players(game)
36- z_iter = Iterators. Stateful(raw_solution. z)
37+ # z_iter = Iterators.Stateful(raw_solution.z)
38+ z_iter = Iterators. Stateful(raw_solution. x)
3739
3840 substrategies = map(1 : number_of_players) do player_index
3941 private_state_dimension = solver. dimensions. state_blocks[player_index]
@@ -50,24 +52,24 @@ function strategy_from_raw_solution(; raw_solution, game, solver)
5052 TrajectoryGamesBase. JointStrategy(substrategies, info)
5153end
5254
53- function generate_initial_guess(solver, game, initial_state)
54- ChainRulesCore. ignore_derivatives() do
55- z_initial = zeros(ParametricMCPs. get_problem_size(solver. mcp_problem_representation))
56-
57- rollout_strategy =
58- map(solver. dimensions. control_blocks) do control_dimension_player_i
59- (x, t) -> zeros(control_dimension_player_i)
60- end |> TrajectoryGamesBase. JointStrategy
61-
62- zero_input_trajectory = TrajectoryGamesBase. rollout(
63- game. dynamics,
64- rollout_strategy,
65- initial_state,
66- solver. dimensions. horizon,
67- )
68-
69- copyto!(z_initial, reduce(vcat, flatten_trajetory_per_player(zero_input_trajectory)))
70-
71- z_initial
72- end
73- end
55+ # function generate_initial_guess(solver, game, initial_state)
56+ # ChainRulesCore.ignore_derivatives() do
57+ # z_initial = zeros(ParametricMCPs.get_problem_size(solver.mcp_problem_representation))
58+ #
59+ # rollout_strategy =
60+ # map(solver.dimensions.control_blocks) do control_dimension_player_i
61+ # (x, t) -> zeros(control_dimension_player_i)
62+ # end |> TrajectoryGamesBase.JointStrategy
63+ #
64+ # zero_input_trajectory = TrajectoryGamesBase.rollout(
65+ # game.dynamics,
66+ # rollout_strategy,
67+ # initial_state,
68+ # solver.dimensions.horizon,
69+ # )
70+ #
71+ # copyto!(z_initial, reduce(vcat, flatten_trajetory_per_player(zero_input_trajectory)))
72+ #
73+ # z_initial
74+ # end
75+ # end
0 commit comments