We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent 12ee8ac commit 0c76b7aCopy full SHA for 0c76b7a
examples/train-kernel-parameters/script.jl
@@ -32,10 +32,7 @@ plot!(x_test, sinc; lab="true function")
32
# To train the kernel parameters via ForwardDiff.jl
33
# we need to create a function creating a kernel from an array
34
35
-kernelcall(θ) = transform(
36
- exp(θ[1]) * SqExponentialKernel(),# + exp(θ[2]) * Matern32Kernel(),
37
- exp(θ[3]),
38
-)
+kernelcall(θ) = (exp(θ[1]) * SqExponentialKernel() + exp(θ[2]) * Matern32Kernel()) ∘ ScaleTransform(exp(θ[3]))
39
40
# From theory we know the prediction for a test set x given
41
# the kernel parameters and normalization constant
0 commit comments