|
4 | 4 | x = rand(rng, 5)
|
5 | 5 | y = rand(rng, 5)
|
6 | 6 | r = rand(rng, 5)
|
| 7 | + Q = Matrix(Cholesky(rand(rng, 5, 5), 'U', 0)) |
| 8 | + @assert isposdef(Q) |
7 | 9 |
|
8 |
| - gzeucl = gradient(:Zygote, [x,y]) do xy |
| 10 | + |
| 11 | + gzeucl = gradient(:Zygote, [x, y]) do xy |
9 | 12 | evaluate(Euclidean(), xy[1], xy[2])
|
10 | 13 | end
|
11 |
| - gzsqeucl = gradient(:Zygote, [x,y]) do xy |
| 14 | + gzsqeucl = gradient(:Zygote, [x, y]) do xy |
12 | 15 | evaluate(SqEuclidean(), xy[1], xy[2])
|
13 | 16 | end
|
14 |
| - gzdotprod = gradient(:Zygote, [x,y]) do xy |
| 17 | + gzdotprod = gradient(:Zygote, [x, y]) do xy |
15 | 18 | evaluate(KernelFunctions.DotProduct(), xy[1], xy[2])
|
16 | 19 | end
|
17 |
| - gzdelta = gradient(:Zygote, [x,y]) do xy |
| 20 | + gzdelta = gradient(:Zygote, [x, y]) do xy |
18 | 21 | evaluate(KernelFunctions.Delta(), xy[1], xy[2])
|
19 | 22 | end
|
20 |
| - gzsinus = gradient(:Zygote, [x,y]) do xy |
| 23 | + gzsinus = gradient(:Zygote, [x, y]) do xy |
21 | 24 | evaluate(KernelFunctions.Sinus(r), xy[1], xy[2])
|
22 | 25 | end
|
| 26 | + gzsqmaha = gradient(:Zygote, [Q, x, y]) do xy |
| 27 | + evaluate(SqMahalanobis(xy[1]), xy[2], xy[3]) |
| 28 | + end |
23 | 29 |
|
24 |
| - gfeucl = gradient(:FiniteDiff, [x,y]) do xy |
| 30 | + gfeucl = gradient(:FiniteDiff, [x, y]) do xy |
25 | 31 | evaluate(Euclidean(), xy[1], xy[2])
|
26 | 32 | end
|
27 |
| - gfsqeucl = gradient(:FiniteDiff, [x,y]) do xy |
| 33 | + gfsqeucl = gradient(:FiniteDiff, [x, y]) do xy |
28 | 34 | evaluate(SqEuclidean(), xy[1], xy[2])
|
29 | 35 | end
|
30 |
| - gfdotprod = gradient(:FiniteDiff, [x,y]) do xy |
| 36 | + gfdotprod = gradient(:FiniteDiff, [x, y]) do xy |
31 | 37 | evaluate(KernelFunctions.DotProduct(), xy[1], xy[2])
|
32 | 38 | end
|
33 |
| - gfdelta = gradient(:FiniteDiff, [x,y]) do xy |
| 39 | + gfdelta = gradient(:FiniteDiff, [x, y]) do xy |
34 | 40 | evaluate(KernelFunctions.Delta(), xy[1], xy[2])
|
35 | 41 | end
|
36 |
| - gfsinus = gradient(:FiniteDiff, [x,y]) do xy |
| 42 | + gfsinus = gradient(:FiniteDiff, [x, y]) do xy |
37 | 43 | evaluate(KernelFunctions.Sinus(r), xy[1], xy[2])
|
38 | 44 | end
|
| 45 | + gfsqmaha = gradient(:FiniteDiff, [Q, x, y]) do xy |
| 46 | + evaluate(SqMahalanobis(xy[1]), xy[2], xy[3]) |
| 47 | + end |
39 | 48 |
|
40 | 49 |
|
41 | 50 | @test all(gzeucl .≈ gfeucl)
|
42 | 51 | @test all(gzsqeucl .≈ gfsqeucl)
|
43 | 52 | @test all(gzdotprod .≈ gfdotprod)
|
44 | 53 | @test all(gzdelta .≈ gfdelta)
|
45 | 54 | @test all(gzsinus .≈ gfsinus)
|
| 55 | + @test all(gzsqmaha .≈ gfsqmaha) |
46 | 56 | end
|
0 commit comments