|
58 | 58 | tx_col = transform(SEKernel(), SelectTransform([1, 3]))
|
59 | 59 | ta_col = transform(SEKernel(), SelectTransform([:x, :z]))
|
60 | 60 |
|
61 |
| - @test kernelmatrix(tx_row, X; obsdim=2) == kernelmatrix(ta_row, A; obsdim=2) |
62 |
| - @test kernelmatrix(tx_col, X; obsdim=1) == kernelmatrix(ta_col, A; obsdim=1) |
| 61 | + @test kernelmatrix(tx_row, X; obsdim=2) ≈ kernelmatrix(ta_row, A; obsdim=2) |
| 62 | + @test kernelmatrix(tx_col, X; obsdim=1) ≈ kernelmatrix(ta_col, A; obsdim=1) |
63 | 63 |
|
64 |
| - @test kernelmatrix(tx_row, X, Y; obsdim=2) == kernelmatrix(ta_row, A, B; obsdim=2) |
65 |
| - @test kernelmatrix(tx_col, X, Z; obsdim=1) == kernelmatrix(ta_col, A, C; obsdim=1) |
| 64 | + @test kernelmatrix(tx_row, X, Y; obsdim=2) ≈ kernelmatrix(ta_row, A, B; obsdim=2) |
| 65 | + @test kernelmatrix(tx_col, X, Z; obsdim=1) ≈ kernelmatrix(ta_col, A, C; obsdim=1) |
66 | 66 |
|
67 | 67 | @testset "$(AD)" for AD in [:Zygote, :ForwardDiff]
|
68 | 68 | gx = gradient(AD, X) do x
|
|
71 | 71 | ga = gradient(AD, A) do a
|
72 | 72 | testfunction(ta_row, a, 2)
|
73 | 73 | end
|
74 |
| - @test gx == ga |
| 74 | + @test gx ≈ ga |
75 | 75 | gx = gradient(AD, X) do x
|
76 | 76 | testfunction(tx_col, x, 1)
|
77 | 77 | end
|
78 | 78 | ga = gradient(AD, A) do a
|
79 | 79 | testfunction(ta_col, a, 1)
|
80 | 80 | end
|
81 |
| - @test gx == ga |
| 81 | + @test gx ≈ ga |
82 | 82 | gx = gradient(AD, X) do x
|
83 | 83 | testfunction(tx_row, x, Y, 2)
|
84 | 84 | end
|
85 | 85 | ga = gradient(AD, A) do a
|
86 | 86 | testfunction(ta_row, a, B, 2)
|
87 | 87 | end
|
88 |
| - @test gx == ga |
| 88 | + @test gx ≈ ga |
89 | 89 | gx = gradient(AD, X) do x
|
90 | 90 | testfunction(tx_col, x, Z, 1)
|
91 | 91 | end
|
92 | 92 | ga = gradient(AD, A) do a
|
93 | 93 | testfunction(ta_col, a, C, 1)
|
94 | 94 | end
|
95 |
| - @test gx == ga |
| 95 | + @test gx ≈ ga |
96 | 96 | end
|
97 | 97 |
|
98 | 98 | @testset "$(AD)" for AD in [:ReverseDiff]
|
|
0 commit comments