@@ -29,7 +29,9 @@ function gradient(f, ::Val{:FiniteDiff}, args)
29
29
end
30
30
31
31
function compare_gradient (f, AD:: Symbol , args)
32
- isapprox (gradient (f, AD, args), gradient (f, :FiniteDiff , args), atol= 1e-8 , rtol= 1e-5 )
32
+ grad_AD = gradient (f, AD, args)
33
+ grad_FD = gradient (f, :FiniteDiff , args)
34
+ @test grad_AD ≈ grad_FD atol= 1e-8 rtol= 1e-5
33
35
end
34
36
35
37
testfunction (k, A, B, dim) = sum (kernelmatrix (k, A, B, obsdim = dim))
@@ -104,40 +106,40 @@ function test_AD(AD::Symbol, kernelfunction, args = nothing, dims = [3, 3])
104
106
rng = MersenneTwister (42 )
105
107
if k isa SimpleKernel
106
108
for d in log .([eps (), rand (rng)])
107
- @test compare_gradient (AD, [d]) do x
109
+ compare_gradient (AD, [d]) do x
108
110
kappa (k, exp (x[1 ]))
109
111
end
110
112
end
111
113
end
112
114
# Testing kernel evaluations
113
115
x = rand (rng, dims[1 ])
114
116
y = rand (rng, dims[1 ])
115
- @test compare_gradient (AD, x) do x
117
+ compare_gradient (AD, x) do x
116
118
k (x, y)
117
119
end
118
- @test compare_gradient (AD, y) do y
120
+ compare_gradient (AD, y) do y
119
121
k (x, y)
120
122
end
121
123
if ! (args === nothing )
122
- @test compare_gradient (AD, args) do p
124
+ compare_gradient (AD, args) do p
123
125
kernelfunction (p)(x,y)
124
126
end
125
127
end
126
128
# Testing kernel matrices
127
129
A = rand (rng, dims... )
128
130
B = rand (rng, dims... )
129
131
for dim in 1 : 2
130
- @test compare_gradient (AD, A) do a
132
+ compare_gradient (AD, A) do a
131
133
testfunction (k, a, dim)
132
134
end
133
- @test compare_gradient (AD, A) do a
135
+ compare_gradient (AD, A) do a
134
136
testfunction (k, a, B, dim)
135
137
end
136
- @test compare_gradient (AD, B) do b
138
+ compare_gradient (AD, B) do b
137
139
testfunction (k, A, b, dim)
138
140
end
139
141
if ! (args === nothing )
140
- @test compare_gradient (AD, args) do p
142
+ compare_gradient (AD, args) do p
141
143
testfunction (kernelfunction (p), A, dim)
142
144
end
143
145
end
0 commit comments