|
1 |
| -FDM = central_fdm(5, 1) |
| 1 | +FDM = FiniteDifferences.central_fdm(5, 1) |
2 | 2 |
|
3 | 3 | function gradient(::Val{:Zygote}, f::Function, args)
|
4 | 4 | first(Zygote.gradient(f, args))
|
|
19 | 19 | function gradient(::Val{:FiniteDiff}, f::Function, args)
|
20 | 20 | first(FiniteDifferences.grad(FDM, f, args))
|
21 | 21 | end
|
| 22 | + |
| 23 | + |
| 24 | +testfunction(k, A, B, dim) = sum(kernelmatrix(k, A, B, obsdim = dim)) |
| 25 | +testfunction(k, A, dim) = sum(kernelmatrix(k, A, obsdim = dim)) |
| 26 | + |
| 27 | +function test_FiniteDiff(kernelname, kernelfunction, args = nothing) |
| 28 | + # Init arguments : |
| 29 | + k = if args === nothing |
| 30 | + kernelfunction() |
| 31 | + else |
| 32 | + kernelfunction(args) |
| 33 | + end |
| 34 | + dims = [3, 3] |
| 35 | + rng = MersenneTwister(42) |
| 36 | + @testset "FiniteDifferences with $(kernelname)" begin |
| 37 | + if k isa SimpleKernel |
| 38 | + for d in log.([eps(), rand(rng)]) |
| 39 | + @test_nowarn gradient(Val(:FiniteDiff), x -> kappa(k, exp(first(x))), [d]) |
| 40 | + end |
| 41 | + end |
| 42 | + ## Testing Kernel Functions |
| 43 | + x = rand(rng, dims[1]) |
| 44 | + y = rand(rng, dims[1]) |
| 45 | + @test_nowarn gradient(Val(:FiniteDiff), x -> k(x, y), x) |
| 46 | + if !(args === nothing) |
| 47 | + @test_nowarn gradient(Val(:FiniteDiff), p -> kernelfunction(p)(x, y), args) |
| 48 | + end |
| 49 | + ## Testing Kernel Matrices |
| 50 | + A = rand(rng, dims...) |
| 51 | + B = rand(rng, dims...) |
| 52 | + for dim in 1:2 |
| 53 | + @test_nowarn gradient(Val(:FiniteDiff), a -> testfunction(k, a, dim), A) |
| 54 | + @test_nowarn gradient(Val(:FiniteDiff), a -> testfunction(k, a, B, dim), A) |
| 55 | + @test_nowarn gradient(Val(:FiniteDiff), b -> testfunction(k, A, b, dim), B) |
| 56 | + if !(args === nothing) |
| 57 | + @test_nowarn gradient(Val(:FiniteDiff), p -> testfunction(kernelfunction(p), A, B, dim), args) |
| 58 | + end |
| 59 | + end |
| 60 | + end |
| 61 | +end |
| 62 | + |
| 63 | +function test_AD(AD, kernelname, kernelfunction, args = nothing) |
| 64 | + @testset "Testing $(kernelname) with AD : $(AD)" begin |
| 65 | + # Test kappa function |
| 66 | + dims = [3, 3] |
| 67 | + k = if args === nothing |
| 68 | + kernelfunction() |
| 69 | + else |
| 70 | + kernelfunction(args) |
| 71 | + end |
| 72 | + rng = MersenneTwister(42) |
| 73 | + if k isa SimpleKernel |
| 74 | + for d in log.([eps(), rand(rng)]) |
| 75 | + @test gradient(Val(AD), x -> kappa(k, exp(x[1])), [d]) ≈ gradient(Val(:FiniteDiff), x -> kappa(k, exp(x[1])), [d]) atol=1e-8 |
| 76 | + end |
| 77 | + end |
| 78 | + # Testing kernel evaluations |
| 79 | + x = rand(rng, dims[1]) |
| 80 | + y = rand(rng, dims[1]) |
| 81 | + @test gradient(Val(AD), x -> k(x, y), x) ≈ gradient(Val(:FiniteDiff), x -> k(x, y), x) atol=1e-8 |
| 82 | + @test gradient(Val(AD), y -> k(x, y), y) ≈ gradient(Val(:FiniteDiff), y -> k(x, y), y) atol=1e-8 |
| 83 | + if !(args === nothing) |
| 84 | + @test gradient(Val(AD), p -> kernelfunction(p)(x,y), args) ≈ gradient(Val(:FiniteDiff), p -> kernelfunction(p)(x, y), args) atol=1e-8 |
| 85 | + end |
| 86 | + # Testing kernel matrices |
| 87 | + A = rand(rng, dims...) |
| 88 | + B = rand(rng, dims...) |
| 89 | + for dim in 1:2 |
| 90 | + @test gradient(Val(AD), x -> testfunction(k, x, dim), A) ≈ gradient(Val(:FiniteDiff), x -> testfunction(k, x, dim), A) atol=1e-8 |
| 91 | + @test gradient(Val(AD), a -> testfunction(k, a, B, dim), A) ≈ gradient(Val(:FiniteDiff), a -> testfunction(k, a, B, dim), A) atol=1e-8 |
| 92 | + @test gradient(Val(AD), b -> testfunction(k, A, b, dim), B) ≈ gradient(Val(:FiniteDiff), b -> testfunction(k, A, b, dim), B) atol=1e-8 |
| 93 | + if !(args === nothing) |
| 94 | + @test gradient(Val(AD), p -> testfunction(kernelfunction(p), A, dim), args) ≈ gradient(Val(:FiniteDiff), p -> testfunction(kernelfunction(p), A, dim), args) atol=1e-8 |
| 95 | + end |
| 96 | + end |
| 97 | + end |
| 98 | +end |
0 commit comments