@@ -50,7 +50,7 @@ polygon_points = [
5050# Plot it!
5151# First, we'll plot the polygon using Makie's rendering:
5252f, a1, p1 = poly(
53- Point2.(polygon_points);
53+ Point2.(GO.forcexy( polygon_points) );
5454 color = last.(polygon_points),
5555 colormap = cgrad(:jet, 18; categorical = true),
5656 axis = (;
@@ -75,7 +75,7 @@ p2box = poly!( # Now, we plot a cropping rectangle around the axis so we only sh
7575 GI.Polygon( # This is a rectangle with an internal hole shaped like the polygon.
7676 [
7777 Point2f[(ext.X[1], ext.Y[1]), (ext.X[2], ext.Y[1]), (ext.X[2], ext.Y[2]), (ext.X[1], ext.Y[2]), (ext.X[1], ext.Y[1])], # exterior
78- reverse(Point2f.(polygon_points)) # hole
78+ reverse(Point2f.(GO.forcexy( polygon_points) )) # hole
7979 ]
8080 ); color = :white, xautolimits = false, yautolimits = false
8181)
@@ -85,7 +85,7 @@ xrange = LinRange(ext.X..., 400)
8585yrange = LinRange(ext.Y..., 400)
8686@time mean_values = GO.barycentric_interpolate.(
8787 (GO.MeanValue(),), # The barycentric coordinate algorithm (MeanValue is the only one for now)
88- (( polygon_points) ,), # The polygon points as `Point2f`
88+ (GI.Polygon(GI.LinearRing.([ polygon_points])) ,), # The polygon
8989 (last.(polygon_points,),), # The values per polygon point - can be anything which supports addition and division
9090 tuple.(xrange, yrange') # The points at which to interpolate
9191)
0 commit comments