@@ -195,7 +195,7 @@ _segmentize(method, geom) = _segmentize(method, geom, GI.trait(geom))
195
195
This is a method which performs the common functionality for both linear and geodesic algorithms,
196
196
and calls out to the "kernel" function which we've defined per linesegment.
197
197
=#
198
- function _segmentize (method:: Union{Linear , Spherical} , geom, T:: Union{GI.LineStringTrait, GI.LinearRingTrait} ; max_distance)
198
+ function _segmentize (method:: Union{Planar , Spherical} , geom, T:: Union{GI.LineStringTrait, GI.LinearRingTrait} ; max_distance)
199
199
first_coord = GI. getpoint (geom, 1 )
200
200
x1, y1 = GI. x (first_coord), GI. y (first_coord)
201
201
new_coords = NTuple{2 , Float64}[]
@@ -209,7 +209,7 @@ function _segmentize(method::Union{Linear, Spherical}, geom, T::Union{GI.LineStr
209
209
return rebuild (geom, new_coords)
210
210
end
211
211
212
- function _fill_linear_kernel! (:: Linear , new_coords:: Vector , x1, y1, x2, y2; max_distance)
212
+ function _fill_linear_kernel! (:: Planar , new_coords:: Vector , x1, y1, x2, y2; max_distance)
213
213
dx, dy = x2 - x1, y2 - y1
214
214
distance = hypot (dx, dy) # this is a more stable way to compute the Euclidean distance
215
215
if distance > max_distance
0 commit comments