diff --git a/src/specializations/BezierCurve.jl b/src/specializations/BezierCurve.jl index a79f5dd3..cdae2ec6 100644 --- a/src/specializations/BezierCurve.jl +++ b/src/specializations/BezierCurve.jl @@ -27,7 +27,7 @@ Like [`integral`](@ref) but integrates along the domain defined by `curve`. - `diff_method::DifferentiationMethod = Analytical()`: the method to use for calculating Jacobians that are used to calculate differential elements - `FP = Float64`: the floating point precision desired -- `alg = Meshes.Horner()`: the method to use for parameterizing `curve`. Alternatively, +- `alg = Meshes.Horner()`: the method to use for parametrizing `curve`. Alternatively, `alg=Meshes.DeCasteljau()` can be specified for increased accuracy, but comes with a steep performance cost, especially for curves with a large number of control points. """ diff --git a/src/specializations/ConeSurface.jl b/src/specializations/ConeSurface.jl index 7d0071b1..007445d8 100644 --- a/src/specializations/ConeSurface.jl +++ b/src/specializations/ConeSurface.jl @@ -3,7 +3,7 @@ # # Why Specialized? # The parametric function that Meshes.jl currently implements for ConeSurface -# only parameterizes the rounded walls of the cone, but this Geometry surface is +# only parametrizes the rounded walls of the cone, but this Geometry surface is # defined as including the circular base surface as well. These methods simply # integrate both the base and walls and return the sum of the two integrals. ################################################################################ @@ -14,7 +14,7 @@ function integral( rule::I; kwargs... ) where {I <: IntegrationRule} - # The generic method only parameterizes the sides + # The generic method only parametrizes the sides sides = _integral(f, cone, rule; kwargs...) # Integrate the Disk at the base diff --git a/src/specializations/CylinderSurface.jl b/src/specializations/CylinderSurface.jl index 3ad81737..3e79d0be 100644 --- a/src/specializations/CylinderSurface.jl +++ b/src/specializations/CylinderSurface.jl @@ -3,7 +3,7 @@ # # Why Specialized? # The parametric function that Meshes.jl currently implements for CylinderSurface -# only parameterizes the rounded walls, but this Geometry surface is defined as +# only parametrizes the rounded walls, but this Geometry surface is defined as # including the top and bottom circular base surfaces as well. These methods # simply integrate the base and walls and return the sum of the three integrals. ################################################################################ @@ -14,7 +14,7 @@ function integral( rule::I; kwargs... ) where {I <: IntegrationRule} - # The generic method only parameterizes the sides + # The generic method only parametrizes the sides sides = _integral(f, cyl, rule; kwargs...) # Integrate the Disk at the top diff --git a/src/specializations/FrustumSurface.jl b/src/specializations/FrustumSurface.jl index 5bf1df49..94c4785b 100644 --- a/src/specializations/FrustumSurface.jl +++ b/src/specializations/FrustumSurface.jl @@ -3,7 +3,7 @@ # # Why Specialized? # The parametric function that Meshes.jl currently implements for FrustumSurface -# only parameterizes the rounded walls, but this Geometry surface is defined as +# only parametrizes the rounded walls, but this Geometry surface is defined as # including the truncated top and bottom surfaces as well. These methods simply # integrate both the walls and the ends and return the sum of the these integrals. ################################################################################ @@ -14,7 +14,7 @@ function integral( rule::I; kwargs... ) where {I <: IntegrationRule} - # The generic method only parameterizes the sides + # The generic method only parametrizes the sides sides = _integral(f, frust, rule; kwargs...) # Integrate the Disks at the top and bottom diff --git a/test/combinations.jl b/test/combinations.jl index 2ffb1b9a..a6d63d3d 100644 --- a/test/combinations.jl +++ b/test/combinations.jl @@ -545,7 +545,7 @@ end if pkgversion(Meshes) >= v"0.51.20" using CoordRefSystems: Polar - # Parameterize a circle centered on origin with specified radius + # Parametrize a circle centered on origin with specified radius radius = 4.4 curve_cart = ParametrizedCurve( t -> Point(radius * cos(t), radius * sin(t)), (0.0, 2π))