|
2 | 2 |
|
3 | 3 | GNNLux.jl is a work-in-progress package that implements stateless graph convolutional layers, fully compatible with the [Lux.jl](https://lux.csail.mit.edu/stable/) machine learning framework. It is built on top of the GNNGraphs.jl, GNNlib.jl, and Lux.jl packages.
|
4 | 4 |
|
5 |
| -The full documentation will be available soon. |
| 5 | +## Package overview |
| 6 | + |
| 7 | +Let's give a brief overview of the package by solving a graph regression problem with synthetic data. |
| 8 | + |
| 9 | +### Data preparation |
| 10 | + |
| 11 | +We generate a dataset of multiple random graphs with associated data features, then split it into training and testing sets. |
| 12 | + |
| 13 | +```julia |
| 14 | +using GNNLux, Lux, Statistics, MLUtils, Random |
| 15 | +using Zygote, Optimisers |
| 16 | + |
| 17 | +rng = Random.default_rng() |
| 18 | + |
| 19 | +all_graphs = GNNGraph[] |
| 20 | + |
| 21 | +for _ in 1:1000 |
| 22 | + g = rand_graph(rng, 10, 40, |
| 23 | + ndata=(; x = randn(rng, Float32, 16,10)), # Input node features |
| 24 | + gdata=(; y = randn(rng, Float32))) # Regression target |
| 25 | + push!(all_graphs, g) |
| 26 | +end |
| 27 | + |
| 28 | +train_graphs, test_graphs = MLUtils.splitobs(all_graphs, at=0.8) |
| 29 | +``` |
| 30 | + |
| 31 | +### Model building |
| 32 | + |
| 33 | +We concisely define our model as a [`GNNLux.GNNChain`](@ref) containing two graph convolutional layers and initialize the model's parameters and state. |
| 34 | + |
| 35 | +```julia |
| 36 | +model = GNNChain(GCNConv(16 => 64), |
| 37 | + x -> relu.(x), |
| 38 | + Dropout(0.6), |
| 39 | + GCNConv(64 => 64, relu), |
| 40 | + x -> mean(x, dims=2), |
| 41 | + Dense(64, 1)) |
| 42 | + |
| 43 | +ps, st = LuxCore.setup(rng, model) |
| 44 | +``` |
| 45 | +### Training |
| 46 | + |
| 47 | +Finally, we use a standard Lux training pipeline to fit our dataset. |
| 48 | + |
| 49 | +```julia |
| 50 | +function custom_loss(model, ps, st, tuple) |
| 51 | + g,x,y = tuple |
| 52 | + y_pred,st = model(g, x, ps, st) |
| 53 | + return MSELoss()(y_pred, y), (layers = st,), 0 |
| 54 | +end |
| 55 | + |
| 56 | +function train_model!(model, ps, st, train_graphs, test_graphs) |
| 57 | + train_state = Lux.Training.TrainState(model, ps, st, Adam(0.0001f0)) |
| 58 | + train_loss=0 |
| 59 | + for iter in 1:100 |
| 60 | + for g in train_graphs |
| 61 | + _, loss, _, train_state = Lux.Training.single_train_step!(AutoZygote(), custom_loss,(g, g.x, g.y), train_state) |
| 62 | + train_loss += loss |
| 63 | + end |
| 64 | + |
| 65 | + train_loss = train_loss/length(train_graphs) |
| 66 | + |
| 67 | + if iter % 10 == 0 |
| 68 | + st_ = Lux.testmode(train_state.states) |
| 69 | + test_loss =0 |
| 70 | + for g in test_graphs |
| 71 | + ŷ, st_ = model(g, g.x, train_state.parameters, st_) |
| 72 | + st_ = (layers = st_,) |
| 73 | + test_loss += MSELoss()(g.y,ŷ) |
| 74 | + end |
| 75 | + test_loss = test_loss/length(test_graphs) |
| 76 | + |
| 77 | + @info (; iter, train_loss, test_loss) |
| 78 | + end |
| 79 | + end |
| 80 | + |
| 81 | + return model, ps, st |
| 82 | +end |
| 83 | + |
| 84 | +train_model!(model, ps, st, train_graphs, test_graphs) |
| 85 | +``` |
0 commit comments