You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
\mathbf{h}^{(l)}_i = GRU(\mathbf{h}^{(l-1)}_i, \box_{j \in N(i)} W \mathbf{h}^{(l-1)}_j)
305
+
\mathbf{h}^{(l)}_i = GRU(\mathbf{h}^{(l-1)}_i, \square_{j \in N(i)} W \mathbf{h}^{(l-1)}_j)
305
306
```
306
307
307
308
where ``\mathbf{h}^{(l)}_i`` denotes the ``l``-th hidden variables passing through GRU. The dimension of input ``\mathbf{x}_i`` needs to be less or equal to `out`.
@@ -369,7 +370,7 @@ Edge convolutional layer from paper [Dynamic Graph CNN for Learning on Point Clo
0 commit comments