Skip to content

Commit 15d32ec

Browse files
update readme
1 parent bfde34b commit 15d32ec

File tree

1 file changed

+16
-17
lines changed

1 file changed

+16
-17
lines changed

README.md

Lines changed: 16 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -1,27 +1,26 @@
11
# GraphNeuralNetworks.jl
22

3-
[![](https://img.shields.io/badge/docs-stable-blue.svg)](https://fluxml.ai/GraphNeuralNetworks.jl/stable)
4-
[![](https://img.shields.io/badge/docs-dev-blue.svg)](https://fluxml.ai/GraphNeuralNetworks.jl/dev)
3+
[![](https://img.shields.io/badge/docs-stable-blue.svg)](https://CarloLucibello.github.io/GraphNeuralNetworks.jl/stable)
4+
[![](https://img.shields.io/badge/docs-dev-blue.svg)](https://CarloLucibello.github.io/GraphNeuralNetworks.jl/dev)
55
![](https://github.com/CarloLucibello/GraphNeuralNetworks.jl/actions/workflows/ci.yml/badge.svg)
66
[![codecov](https://codecov.io/gh/FluxML/GraphNeuralNetworks.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/CarloLucibello/GraphNeuralNetworks.jl)
77

8-
GraphNeuralNetworks (GNN) is a graph neural network library for Julia based on the [Flux.jl](https://github.com/FluxML/Flux.jl) deep learning framework.
8+
*GraphNeuralNetworks* is a graph neural network library for Julia based on the [Flux.jl](https://github.com/FluxML/Flux.jl) deep learning framework.
99

10-
11-
## Installation
12-
13-
```julia
14-
]add GraphNeuralNetworks
15-
```
16-
17-
## Features
10+
Some of its noticeable features are the following:
1811

1912
* Based on the Flux deep learning framework.
2013
* CUDA support.
2114
* Integrated with the JuliaGraphs ecosystem.
2215
* Supports generic graph neural network architectures.
2316
* Easy to define custom graph convolutional layers.
2417

18+
## Installation
19+
20+
```julia
21+
]add GraphNeuralNetworks
22+
```
23+
2524
## Featured Graphs
2625

2726
GraphNeuralNetworks handles graph data (the graph topology + node/edge/global features)
@@ -49,16 +48,16 @@ struct GNN
4948
conv1
5049
conv2
5150
dense
52-
53-
function GNN()
54-
new(GCNConv(1024=>512, relu),
55-
GCNConv(512=>128, relu),
56-
Dense(128, 10))
57-
end
5851
end
5952

6053
@functor GNN
6154

55+
function GNN()
56+
GNN(GCNConv(1024=>512, relu),
57+
GCNConv(512=>128, relu),
58+
Dense(128, 10))
59+
end
60+
6261
function (net::GNN)(g, x)
6362
x = net.conv1(g, x)
6463
x = dropout(x, 0.5)

0 commit comments

Comments
 (0)