|  | 
|  | 1 | +```@meta | 
|  | 2 | +CurrentModule = GNNGraphs | 
|  | 3 | +``` | 
|  | 4 | + | 
| 1 | 5 | # Temporal Graphs | 
| 2 | 6 | 
 | 
| 3 | 7 | Temporal Graphs are graphs with time varying topologies and  features. In GNNGraphs.jl, temporal graphs with fixed number of nodes over time are supported by the [`TemporalSnapshotsGNNGraph`](@ref) type. | 
| @@ -45,7 +49,7 @@ TemporalSnapshotsGNNGraph: | 
| 45 | 49 | 
 | 
| 46 | 50 | See [`rand_temporal_radius_graph`](@ref) and [`rand_temporal_hyperbolic_graph`](@ref) for generating random temporal graphs.  | 
| 47 | 51 | 
 | 
| 48 |  | -```jldoctest temporal | 
|  | 52 | +```julia | 
| 49 | 53 | julia> tg = rand_temporal_radius_graph(10, 3, 0.1, 0.5) | 
| 50 | 54 | TemporalSnapshotsGNNGraph: | 
| 51 | 55 |   num_nodes: [10, 10, 10] | 
| @@ -97,28 +101,30 @@ A temporal graph can store global feature for the entire time series in the `tgd | 
| 97 | 101 | Also, each snapshot can store node, edge, and graph features in the `ndata`, `edata`, and `gdata` fields, respectively.  | 
| 98 | 102 | 
 | 
| 99 | 103 | ```jldoctest temporal | 
| 100 |  | -julia> snapshots = [rand_graph(10,20; ndata = rand(3,10)), rand_graph(10,14; ndata = rand(4,10)), rand_graph(10,22; ndata = rand(5,10))]; # node features at construction time | 
|  | 104 | +julia> snapshots = [rand_graph(10, 20; ndata = rand(Float32, 3, 10)),  | 
|  | 105 | +                    rand_graph(10, 14; ndata = rand(Float32, 4, 10)),  | 
|  | 106 | +                    rand_graph(10, 22; ndata = rand(Float32, 5, 10))]; # node features at construction time | 
| 101 | 107 | 
 | 
| 102 | 108 | julia> tg = TemporalSnapshotsGNNGraph(snapshots); | 
| 103 | 109 | 
 | 
| 104 |  | -julia> tg.tgdata.y = rand(3,1); # add global features after construction | 
|  | 110 | +julia> tg.tgdata.y = rand(Float32, 3, 1); # add global features after construction | 
| 105 | 111 | 
 | 
| 106 | 112 | julia> tg | 
| 107 | 113 | TemporalSnapshotsGNNGraph: | 
| 108 | 114 |   num_nodes: [10, 10, 10] | 
| 109 | 115 |   num_edges: [20, 14, 22] | 
| 110 | 116 |   num_snapshots: 3 | 
| 111 | 117 |   tgdata: | 
| 112 |  | -        y = 3×1 Matrix{Float64} | 
|  | 118 | +        y = 3×1 Matrix{Float32} | 
| 113 | 119 | 
 | 
| 114 | 120 | julia> tg.ndata # vector of DataStore containing node features for each snapshot | 
| 115 | 121 | 3-element Vector{DataStore}: | 
| 116 | 122 |  DataStore(10) with 1 element: | 
| 117 |  | -  x = 3×10 Matrix{Float64} | 
|  | 123 | +  x = 3×10 Matrix{Float32} | 
| 118 | 124 |  DataStore(10) with 1 element: | 
| 119 |  | -  x = 4×10 Matrix{Float64} | 
|  | 125 | +  x = 4×10 Matrix{Float32} | 
| 120 | 126 |  DataStore(10) with 1 element: | 
| 121 |  | -  x = 5×10 Matrix{Float64} | 
|  | 127 | +  x = 5×10 Matrix{Float32} | 
| 122 | 128 | 
 | 
| 123 | 129 | julia> [ds.x for ds in tg.ndata]; # vector containing the x feature of each snapshot | 
| 124 | 130 | 
 | 
|  | 
0 commit comments