@@ -3,7 +3,7 @@ module GNNlibCUDAExt
3
3
using CUDA
4
4
using Random, Statistics, LinearAlgebra
5
5
using GNNlib: GNNlib, propagate, copy_xj, e_mul_xj, w_mul_xj
6
- using GNNGraphs: GNNGraph, COO_T, SPARSE_T
6
+ using GNNGraphs: GNNGraph, COO_T, SPARSE_T, to_dense, to_sparse
7
7
8
8
const CUDA_COO_T = Tuple{T, T, V} where {T <: AnyCuArray{<:Integer} , V <: Union{Nothing, AnyCuArray} }
9
9
@@ -55,9 +55,9 @@ function _adjacency_matrix(g::GNNGraph{<:CUDA_COO_T}, T::DataType = eltype(g); d
55
55
if ! g. is_coalesced
56
56
# Revisit after
57
57
# https://github.com/JuliaGPU/CUDA.jl/issues/1113
58
- A, n, m = GNNGraphs . to_dense (g. graph, T; num_nodes = g. num_nodes, weighted) # if not coalesced, construction of sparse matrix is slow
58
+ A, n, m = to_dense (g. graph, T; num_nodes = g. num_nodes, weighted) # if not coalesced, construction of sparse matrix is slow
59
59
else
60
- A, n, m = GNNGraphs . to_sparse (g. graph, T; num_nodes = g. num_nodes, weighted, is_coalesced = true )
60
+ A, n, m = to_sparse (g. graph, T; num_nodes = g. num_nodes, weighted, is_coalesced = true )
61
61
end
62
62
@assert size (A) == (n, n)
63
63
return dir == :out ? A : A'
0 commit comments