Skip to content

Commit 2a8b8e7

Browse files
author
Documenter.jl
committed
build based on 3fe2c76
1 parent 5220911 commit 2a8b8e7

File tree

24 files changed

+90
-90
lines changed

24 files changed

+90
-90
lines changed

dev/.documenter-siteinfo.json

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
{"documenter":{"julia_version":"1.10.4","generation_timestamp":"2024-09-26T09:48:50","documenter_version":"1.7.0"}}
1+
{"documenter":{"julia_version":"1.10.4","generation_timestamp":"2024-10-03T07:20:24","documenter_version":"1.7.0"}}

dev/api/basic/index.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@
99

1010
julia> dotdec(g, rand(2, 5))
1111
1×6 Matrix{Float64}:
12-
0.345098 0.458305 0.106353 0.345098 0.458305 0.106353</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/CarloLucibello/GraphNeuralNetworks.jl/blob/a034753acee5187dc1e1b85e209d6d2a9b2b7e34/GraphNeuralNetworks/src/layers/basic.jl#L187-L209">source</a></section></article><article class="docstring"><header><a class="docstring-article-toggle-button fa-solid fa-chevron-down" href="javascript:;" title="Collapse docstring"></a><a class="docstring-binding" id="GraphNeuralNetworks.GNNChain" href="#GraphNeuralNetworks.GNNChain"><code>GraphNeuralNetworks.GNNChain</code></a><span class="docstring-category">Type</span><span class="is-flex-grow-1 docstring-article-toggle-button" title="Collapse docstring"></span></header><section><div><pre><code class="language-julia hljs">GNNChain(layers...)
12+
0.345098 0.458305 0.106353 0.345098 0.458305 0.106353</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/CarloLucibello/GraphNeuralNetworks.jl/blob/3fe2c769bbd36fa7efdf2fb0fbae0d3df03ae717/GraphNeuralNetworks/src/layers/basic.jl#L187-L209">source</a></section></article><article class="docstring"><header><a class="docstring-article-toggle-button fa-solid fa-chevron-down" href="javascript:;" title="Collapse docstring"></a><a class="docstring-binding" id="GraphNeuralNetworks.GNNChain" href="#GraphNeuralNetworks.GNNChain"><code>GraphNeuralNetworks.GNNChain</code></a><span class="docstring-category">Type</span><span class="is-flex-grow-1 docstring-article-toggle-button" title="Collapse docstring"></span></header><section><div><pre><code class="language-julia hljs">GNNChain(layers...)
1313
GNNChain(name = layer, ...)</code></pre><p>Collects multiple layers / functions to be called in sequence on given input graph and input node features. </p><p>It allows to compose layers in a sequential fashion as <code>Flux.Chain</code> does, propagating the output of each layer to the next one. In addition, <code>GNNChain</code> handles the input graph as well, providing it as a first argument only to layers subtyping the <a href="#GraphNeuralNetworks.GNNLayer"><code>GNNLayer</code></a> abstract type. </p><p><code>GNNChain</code> supports indexing and slicing, <code>m[2]</code> or <code>m[1:end-1]</code>, and if names are given, <code>m[:name] == m[1]</code> etc.</p><p><strong>Examples</strong></p><pre><code class="language-julia-repl hljs">julia&gt; using Flux, GraphNeuralNetworks
1414

1515
julia&gt; m = GNNChain(GCNConv(2=&gt;5),
@@ -41,7 +41,7 @@
4141
2.90053 2.90053 2.90053 2.90053 2.90053 2.90053
4242

4343
julia&gt; m2[:enc](g, x) == m(g, x)
44-
true</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/CarloLucibello/GraphNeuralNetworks.jl/blob/a034753acee5187dc1e1b85e209d6d2a9b2b7e34/GraphNeuralNetworks/src/layers/basic.jl#L54-L105">source</a></section></article><article class="docstring"><header><a class="docstring-article-toggle-button fa-solid fa-chevron-down" href="javascript:;" title="Collapse docstring"></a><a class="docstring-binding" id="GraphNeuralNetworks.GNNLayer" href="#GraphNeuralNetworks.GNNLayer"><code>GraphNeuralNetworks.GNNLayer</code></a><span class="docstring-category">Type</span><span class="is-flex-grow-1 docstring-article-toggle-button" title="Collapse docstring"></span></header><section><div><pre><code class="language-julia hljs">abstract type GNNLayer end</code></pre><p>An abstract type from which graph neural network layers are derived.</p><p>See also <a href="#GraphNeuralNetworks.GNNChain"><code>GNNChain</code></a>.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/CarloLucibello/GraphNeuralNetworks.jl/blob/a034753acee5187dc1e1b85e209d6d2a9b2b7e34/GraphNeuralNetworks/src/layers/basic.jl#L1-L7">source</a></section></article><article class="docstring"><header><a class="docstring-article-toggle-button fa-solid fa-chevron-down" href="javascript:;" title="Collapse docstring"></a><a class="docstring-binding" id="GraphNeuralNetworks.WithGraph" href="#GraphNeuralNetworks.WithGraph"><code>GraphNeuralNetworks.WithGraph</code></a><span class="docstring-category">Type</span><span class="is-flex-grow-1 docstring-article-toggle-button" title="Collapse docstring"></span></header><section><div><pre><code class="language-julia hljs">WithGraph(model, g::GNNGraph; traingraph=false)</code></pre><p>A type wrapping the <code>model</code> and tying it to the graph <code>g</code>. In the forward pass, can only take feature arrays as inputs, returning <code>model(g, x...; kws...)</code>.</p><p>If <code>traingraph=false</code>, the graph&#39;s parameters won&#39;t be part of the <code>trainable</code> parameters in the gradient updates.</p><p><strong>Examples</strong></p><pre><code class="language-julia hljs">g = GNNGraph([1,2,3], [2,3,1])
44+
true</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/CarloLucibello/GraphNeuralNetworks.jl/blob/3fe2c769bbd36fa7efdf2fb0fbae0d3df03ae717/GraphNeuralNetworks/src/layers/basic.jl#L54-L105">source</a></section></article><article class="docstring"><header><a class="docstring-article-toggle-button fa-solid fa-chevron-down" href="javascript:;" title="Collapse docstring"></a><a class="docstring-binding" id="GraphNeuralNetworks.GNNLayer" href="#GraphNeuralNetworks.GNNLayer"><code>GraphNeuralNetworks.GNNLayer</code></a><span class="docstring-category">Type</span><span class="is-flex-grow-1 docstring-article-toggle-button" title="Collapse docstring"></span></header><section><div><pre><code class="language-julia hljs">abstract type GNNLayer end</code></pre><p>An abstract type from which graph neural network layers are derived.</p><p>See also <a href="#GraphNeuralNetworks.GNNChain"><code>GNNChain</code></a>.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/CarloLucibello/GraphNeuralNetworks.jl/blob/3fe2c769bbd36fa7efdf2fb0fbae0d3df03ae717/GraphNeuralNetworks/src/layers/basic.jl#L1-L7">source</a></section></article><article class="docstring"><header><a class="docstring-article-toggle-button fa-solid fa-chevron-down" href="javascript:;" title="Collapse docstring"></a><a class="docstring-binding" id="GraphNeuralNetworks.WithGraph" href="#GraphNeuralNetworks.WithGraph"><code>GraphNeuralNetworks.WithGraph</code></a><span class="docstring-category">Type</span><span class="is-flex-grow-1 docstring-article-toggle-button" title="Collapse docstring"></span></header><section><div><pre><code class="language-julia hljs">WithGraph(model, g::GNNGraph; traingraph=false)</code></pre><p>A type wrapping the <code>model</code> and tying it to the graph <code>g</code>. In the forward pass, can only take feature arrays as inputs, returning <code>model(g, x...; kws...)</code>.</p><p>If <code>traingraph=false</code>, the graph&#39;s parameters won&#39;t be part of the <code>trainable</code> parameters in the gradient updates.</p><p><strong>Examples</strong></p><pre><code class="language-julia hljs">g = GNNGraph([1,2,3], [2,3,1])
4545
x = rand(Float32, 2, 3)
4646
model = SAGEConv(2 =&gt; 3)
4747
wg = WithGraph(model, g)
@@ -51,4 +51,4 @@
5151
g2 = GNNGraph([1,1,2,3], [2,4,1,1])
5252
x2 = rand(Float32, 2, 4)
5353
# WithGraph will ignore the internal graph if fed with a new one.
54-
@assert wg(g2, x2) == model(g2, x2)</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/CarloLucibello/GraphNeuralNetworks.jl/blob/a034753acee5187dc1e1b85e209d6d2a9b2b7e34/GraphNeuralNetworks/src/layers/basic.jl#L14-L39">source</a></section></article></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../gnngraph/">« GNNGraph</a><a class="docs-footer-nextpage" href="../conv/">Convolutional Layers »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="catppuccin-latte">catppuccin-latte</option><option value="catppuccin-frappe">catppuccin-frappe</option><option value="catppuccin-macchiato">catppuccin-macchiato</option><option value="catppuccin-mocha">catppuccin-mocha</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.7.0 on <span class="colophon-date" title="Thursday 26 September 2024 09:48">Thursday 26 September 2024</span>. Using Julia version 1.10.4.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
54+
@assert wg(g2, x2) == model(g2, x2)</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/CarloLucibello/GraphNeuralNetworks.jl/blob/3fe2c769bbd36fa7efdf2fb0fbae0d3df03ae717/GraphNeuralNetworks/src/layers/basic.jl#L14-L39">source</a></section></article></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../gnngraph/">« GNNGraph</a><a class="docs-footer-nextpage" href="../conv/">Convolutional Layers »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="catppuccin-latte">catppuccin-latte</option><option value="catppuccin-frappe">catppuccin-frappe</option><option value="catppuccin-macchiato">catppuccin-macchiato</option><option value="catppuccin-mocha">catppuccin-mocha</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.7.0 on <span class="colophon-date" title="Thursday 3 October 2024 07:20">Thursday 3 October 2024</span>. Using Julia version 1.10.4.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>

0 commit comments

Comments
 (0)