Skip to content

Commit 3cc3508

Browse files
fixes
1 parent ba2df05 commit 3cc3508

File tree

4 files changed

+4
-4
lines changed

4 files changed

+4
-4
lines changed

docs/Project.toml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,6 +2,6 @@
22
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
33
Flux = "587475ba-b771-5e3f-ad9e-33799f191a9c"
44
GraphNeuralNetworks = "cffab07f-9bc2-4db1-8861-388f63bf7694"
5-
Graphs = "093fc24a-ae57-5d10-9952-331d41423f4d"
5+
Graphs = "86223c79-3864-5bf0-83f7-82e725a168b6"
66
NNlib = "872c559c-99b0-510c-b3b7-b6c96a88d5cd"
77
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"

examples/Project.toml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ DiffEqFlux = "aae7a2af-3d4f-5e19-a356-7da93b79d9d0"
44
DifferentialEquations = "0c46a032-eb83-5123-abaf-570d42b7fbaa"
55
Flux = "587475ba-b771-5e3f-ad9e-33799f191a9c"
66
GraphNeuralNetworks = "cffab07f-9bc2-4db1-8861-388f63bf7694"
7-
Graphs = "093fc24a-ae57-5d10-9952-331d41423f4d"
7+
Graphs = "86223c79-3864-5bf0-83f7-82e725a168b6"
88
MLDatasets = "eb30cadb-4394-5ae3-aed4-317e484a6458"
99
NNlib = "872c559c-99b0-510c-b3b7-b6c96a88d5cd"
1010
NNlibCUDA = "a00861dc-f156-4864-bf3c-e6376f28a68d"

examples/node_classification_cora.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ CUDA.allowscalar(false)
1212
function eval_loss_accuracy(X, y, ids, model, g)
1313
= model(g, X)
1414
l = logitcrossentropy(ŷ[:,ids], y[:,ids])
15-
acc = mean(onecold(ŷ[:,ids] |> cpu) .== onecold(y[:,ids] |> cpu))
15+
acc = mean(onecold(ŷ[:,ids]) .== onecold(y[:,ids]))
1616
return (loss = round(l, digits=4), acc = round(acc*100, digits=2))
1717
end
1818

test/examples/node_classification_cora.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ CUDA.allowscalar(false)
1010
function eval_loss_accuracy(X, y, ids, model, g)
1111
= model(g, X)
1212
l = logitcrossentropy(ŷ[:,ids], y[:,ids])
13-
acc = mean(onecold(ŷ[:,ids] |> cpu) .== onecold(y[:,ids] |> cpu))
13+
acc = mean(onecold(ŷ[:,ids]) .== onecold(y[:,ids]))
1414
return (loss = round(l, digits=4), acc = round(acc*100, digits=2))
1515
end
1616

0 commit comments

Comments
 (0)