|
1 | | -using Flux |
2 | | -using Flux: onecold, onehotbatch |
3 | | -using Flux.Losses: logitcrossentropy |
4 | | -using GraphNeuralNetworks |
5 | | -using MLDatasets: Cora |
6 | | -using Statistics, Random |
7 | | -using CUDA |
8 | | -CUDA.allowscalar(false) |
| 1 | +@testitem "Training Example" setup=[TestModule] begin |
| 2 | + using .TestModule |
| 3 | + using Flux |
| 4 | + using Flux: onecold, onehotbatch |
| 5 | + using Flux.Losses: logitcrossentropy |
| 6 | + using GraphNeuralNetworks |
| 7 | + using MLDatasets: Cora |
| 8 | + using Statistics, Random |
| 9 | + using CUDA |
| 10 | + CUDA.allowscalar(false) |
9 | 11 |
|
10 | | -function eval_loss_accuracy(X, y, ids, model, g) |
11 | | - ŷ = model(g, X) |
12 | | - l = logitcrossentropy(ŷ[:, ids], y[:, ids]) |
13 | | - acc = mean(onecold(ŷ[:, ids]) .== onecold(y[:, ids])) |
14 | | - return (loss = round(l, digits = 4), acc = round(acc * 100, digits = 2)) |
15 | | -end |
| 12 | + function eval_loss_accuracy(X, y, ids, model, g) |
| 13 | + ŷ = model(g, X) |
| 14 | + l = logitcrossentropy(ŷ[:, ids], y[:, ids]) |
| 15 | + acc = mean(onecold(ŷ[:, ids]) .== onecold(y[:, ids])) |
| 16 | + return (loss = round(l, digits = 4), acc = round(acc * 100, digits = 2)) |
| 17 | + end |
16 | 18 |
|
17 | | -# arguments for the `train` function |
18 | | -Base.@kwdef mutable struct Args |
19 | | - η = 5.0f-3 # learning rate |
20 | | - epochs = 10 # number of epochs |
21 | | - seed = 17 # set seed > 0 for reproducibility |
22 | | - usecuda = false # if true use cuda (if available) |
23 | | - nhidden = 64 # dimension of hidden features |
24 | | -end |
| 19 | + # arguments for the `train` function |
| 20 | + Base.@kwdef mutable struct Args |
| 21 | + η = 5.0f-3 # learning rate |
| 22 | + epochs = 10 # number of epochs |
| 23 | + seed = 17 # set seed > 0 for reproducibility |
| 24 | + usecuda = false # if true use cuda (if available) |
| 25 | + nhidden = 64 # dimension of hidden features |
| 26 | + end |
25 | 27 |
|
26 | | -function train(Layer; verbose = false, kws...) |
27 | | - args = Args(; kws...) |
28 | | - args.seed > 0 && Random.seed!(args.seed) |
| 28 | + function train(Layer; verbose = false, kws...) |
| 29 | + args = Args(; kws...) |
| 30 | + args.seed > 0 && Random.seed!(args.seed) |
29 | 31 |
|
30 | | - if args.usecuda && CUDA.functional() |
31 | | - device = Flux.gpu |
32 | | - args.seed > 0 && CUDA.seed!(args.seed) |
33 | | - else |
34 | | - device = Flux.cpu |
35 | | - end |
| 32 | + if args.usecuda && CUDA.functional() |
| 33 | + device = Flux.gpu |
| 34 | + args.seed > 0 && CUDA.seed!(args.seed) |
| 35 | + else |
| 36 | + device = Flux.cpu |
| 37 | + end |
36 | 38 |
|
37 | | - # LOAD DATA |
38 | | - dataset = Cora() |
39 | | - classes = dataset.metadata["classes"] |
40 | | - g = mldataset2gnngraph(dataset) |> device |
41 | | - X = g.ndata.features |
42 | | - y = onehotbatch(g.ndata.targets |> cpu, classes) |> device # remove when https://github.com/FluxML/Flux.jl/pull/1959 tagged |
43 | | - train_mask = g.ndata.train_mask |
44 | | - test_mask = g.ndata.test_mask |
45 | | - ytrain = y[:, train_mask] |
| 39 | + # LOAD DATA |
| 40 | + dataset = Cora() |
| 41 | + classes = dataset.metadata["classes"] |
| 42 | + g = mldataset2gnngraph(dataset) |> device |
| 43 | + X = g.ndata.features |
| 44 | + y = onehotbatch(g.ndata.targets |> cpu, classes) |> device # remove when https://github.com/FluxML/Flux.jl/pull/1959 tagged |
| 45 | + train_mask = g.ndata.train_mask |
| 46 | + test_mask = g.ndata.test_mask |
| 47 | + ytrain = y[:, train_mask] |
46 | 48 |
|
47 | | - nin, nhidden, nout = size(X, 1), args.nhidden, length(classes) |
| 49 | + nin, nhidden, nout = size(X, 1), args.nhidden, length(classes) |
48 | 50 |
|
49 | | - ## DEFINE MODEL |
50 | | - model = GNNChain(Layer(nin, nhidden), |
51 | | - # Dropout(0.5), |
52 | | - Layer(nhidden, nhidden), |
53 | | - Dense(nhidden, nout)) |> device |
| 51 | + ## DEFINE MODEL |
| 52 | + model = GNNChain(Layer(nin, nhidden), |
| 53 | + # Dropout(0.5), |
| 54 | + Layer(nhidden, nhidden), |
| 55 | + Dense(nhidden, nout)) |> device |
54 | 56 |
|
55 | | - opt = Flux.setup(Adam(args.η), model) |
| 57 | + opt = Flux.setup(Adam(args.η), model) |
56 | 58 |
|
57 | | - ## TRAINING |
58 | | - function report(epoch) |
59 | | - train = eval_loss_accuracy(X, y, train_mask, model, g) |
60 | | - test = eval_loss_accuracy(X, y, test_mask, model, g) |
61 | | - println("Epoch: $epoch Train: $(train) Test: $(test)") |
62 | | - end |
| 59 | + ## TRAINING |
| 60 | + function report(epoch) |
| 61 | + train = eval_loss_accuracy(X, y, train_mask, model, g) |
| 62 | + test = eval_loss_accuracy(X, y, test_mask, model, g) |
| 63 | + println("Epoch: $epoch Train: $(train) Test: $(test)") |
| 64 | + end |
63 | 65 |
|
64 | | - verbose && report(0) |
65 | | - @time for epoch in 1:(args.epochs) |
66 | | - grad = Flux.gradient(model) do model |
67 | | - ŷ = model(g, X) |
68 | | - logitcrossentropy(ŷ[:, train_mask], ytrain) |
| 66 | + verbose && report(0) |
| 67 | + @time for epoch in 1:(args.epochs) |
| 68 | + grad = Flux.gradient(model) do model |
| 69 | + ŷ = model(g, X) |
| 70 | + logitcrossentropy(ŷ[:, train_mask], ytrain) |
| 71 | + end |
| 72 | + Flux.update!(opt, model, grad[1]) |
| 73 | + verbose && report(epoch) |
69 | 74 | end |
70 | | - Flux.update!(opt, model, grad[1]) |
71 | | - verbose && report(epoch) |
72 | | - end |
73 | 75 |
|
74 | | - train_res = eval_loss_accuracy(X, y, train_mask, model, g) |
75 | | - test_res = eval_loss_accuracy(X, y, test_mask, model, g) |
76 | | - return train_res, test_res |
77 | | -end |
| 76 | + train_res = eval_loss_accuracy(X, y, train_mask, model, g) |
| 77 | + test_res = eval_loss_accuracy(X, y, test_mask, model, g) |
| 78 | + return train_res, test_res |
| 79 | + end |
78 | 80 |
|
79 | | -function train_many(; usecuda = false) |
80 | | - for (layer, Layer) in [ |
81 | | - ("GCNConv", (nin, nout) -> GCNConv(nin => nout, relu)), |
82 | | - ("ResGatedGraphConv", (nin, nout) -> ResGatedGraphConv(nin => nout, relu)), |
83 | | - ("GraphConv", (nin, nout) -> GraphConv(nin => nout, relu, aggr = mean)), |
84 | | - ("SAGEConv", (nin, nout) -> SAGEConv(nin => nout, relu)), |
85 | | - ("GATConv", (nin, nout) -> GATConv(nin => nout, relu)), |
86 | | - ("GINConv", (nin, nout) -> GINConv(Dense(nin, nout, relu), 0.01, aggr = mean)), |
87 | | - ("TransformerConv", |
88 | | - (nin, nout) -> TransformerConv(nin => nout, concat = false, |
89 | | - add_self_loops = true, root_weight = false, |
90 | | - heads = 2)), |
91 | | - ## ("ChebConv", (nin, nout) -> ChebConv(nin => nout, 2)), # not working on gpu |
92 | | - ## ("NNConv", (nin, nout) -> NNConv(nin => nout)), # needs edge features |
93 | | - ## ("GatedGraphConv", (nin, nout) -> GatedGraphConv(nout, 2)), # needs nin = nout |
94 | | - ## ("EdgeConv",(nin, nout) -> EdgeConv(Dense(2nin, nout, relu))), # Fits the training set but does not generalize well |
95 | | - ] |
96 | | - @show layer |
97 | | - @time train_res, test_res = train(Layer; usecuda, verbose = false) |
98 | | - # @show train_res, test_res |
99 | | - @test train_res.acc > 94 |
100 | | - @test test_res.acc > 69 |
| 81 | + function train_many(; usecuda = false) |
| 82 | + for (layer, Layer) in [ |
| 83 | + ("GCNConv", (nin, nout) -> GCNConv(nin => nout, relu)), |
| 84 | + ("ResGatedGraphConv", (nin, nout) -> ResGatedGraphConv(nin => nout, relu)), |
| 85 | + ("GraphConv", (nin, nout) -> GraphConv(nin => nout, relu, aggr = mean)), |
| 86 | + ("SAGEConv", (nin, nout) -> SAGEConv(nin => nout, relu)), |
| 87 | + ("GATConv", (nin, nout) -> GATConv(nin => nout, relu)), |
| 88 | + ("GINConv", (nin, nout) -> GINConv(Dense(nin, nout, relu), 0.01, aggr = mean)), |
| 89 | + ("TransformerConv", |
| 90 | + (nin, nout) -> TransformerConv(nin => nout, concat = false, |
| 91 | + add_self_loops = true, root_weight = false, |
| 92 | + heads = 2)), |
| 93 | + ## ("ChebConv", (nin, nout) -> ChebConv(nin => nout, 2)), # not working on gpu |
| 94 | + ## ("NNConv", (nin, nout) -> NNConv(nin => nout)), # needs edge features |
| 95 | + ## ("GatedGraphConv", (nin, nout) -> GatedGraphConv(nout, 2)), # needs nin = nout |
| 96 | + ## ("EdgeConv",(nin, nout) -> EdgeConv(Dense(2nin, nout, relu))), # Fits the training set but does not generalize well |
| 97 | + ] |
| 98 | + @show layer |
| 99 | + @time train_res, test_res = train(Layer; usecuda, verbose = false) |
| 100 | + # @show train_res, test_res |
| 101 | + @test train_res.acc > 94 |
| 102 | + @test test_res.acc > 69 |
| 103 | + end |
101 | 104 | end |
102 | | -end |
103 | 105 |
|
104 | | -train_many(usecuda = false) |
105 | | -if TEST_GPU |
106 | | - train_many(usecuda = true) |
| 106 | + train_many(usecuda = false) |
| 107 | + # #TODO |
| 108 | + # if TEST_GPU |
| 109 | + # train_many(usecuda = true) |
| 110 | + # end |
107 | 111 | end |
0 commit comments