You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Temporal Graph Convolutional Network (T-GCN) recurrent layer from the paper [T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction](https://arxiv.org/pdf/1811.05320.pdf).
65
65
@@ -78,7 +78,7 @@ Performs a layer of GCNConv to model spatial dependencies, followed by a Gated R
78
78
If `add_self_loops=true` the new weights will be set to 1.
79
79
This option is ignored if the `edge_weight` is explicitly provided in the forward pass.
80
80
Default `false`.
81
-
- `act`: Activation function used in the GCNConv layer. Default `relu`.
81
+
- `act`: Activation function used in the GCNConv layer. Default `sigmoid`.
82
82
83
83
84
84
# Examples
@@ -93,11 +93,11 @@ rng = Random.default_rng()
93
93
g = rand_graph(rng, 5, 10)
94
94
x = rand(rng, Float32, 2, 5)
95
95
96
-
# create TGCN layer with default activation (relu)
96
+
# create TGCN layer with default activation (sigmoid)
0 commit comments