@@ -4,17 +4,17 @@ ATOL_LOW = 1e-3
44
55@testset " GCNConv" begin
66 l = GCNConv (D_IN => D_OUT)
7- for g in test_graphs
7+ for g in TEST_GRAPHS
88 test_layer (l, g, rtol = RTOL_HIGH, outsize = (D_OUT, g. num_nodes))
99 end
1010
1111 l = GCNConv (D_IN => D_OUT, tanh, bias = false )
12- for g in test_graphs
12+ for g in TEST_GRAPHS
1313 test_layer (l, g, rtol = RTOL_HIGH, outsize = (D_OUT, g. num_nodes))
1414 end
1515
1616 l = GCNConv (D_IN => D_OUT, add_self_loops = false )
17- test_layer (l, g1 , rtol = RTOL_HIGH, outsize = (D_OUT, g1 . num_nodes))
17+ test_layer (l, TEST_GRAPHS[ 1 ] , rtol = RTOL_HIGH, outsize = (D_OUT, TEST_GRAPHS[ 1 ] . num_nodes))
1818
1919 @testset " edge weights & custom normalization" begin
2020 s = [2 , 3 , 1 , 3 , 1 , 2 ]
5757 @test size (l. weight) == (D_OUT, D_IN, k)
5858 @test size (l. bias) == (D_OUT,)
5959 @test l. k == k
60- for g in test_graphs
60+ for g in TEST_GRAPHS
6161 g = add_self_loops (g)
6262 test_layer (l, g, rtol = RTOL_HIGH, test_gpu = TEST_GPU,
6363 outsize = (D_OUT, g. num_nodes))
6464 end
6565
6666 @testset " bias=false" begin
67- @test length (Flux. params (ChebConv (2 => 3 , 3 ))) == 2
68- @test length (Flux. params (ChebConv (2 => 3 , 3 , bias = false ))) == 1
67+ @test length (Flux. trainables (ChebConv (2 => 3 , 3 ))) == 2
68+ @test length (Flux. trainables (ChebConv (2 => 3 , 3 , bias = false ))) == 1
6969 end
7070end
7171
7272@testset " GraphConv" begin
7373 l = GraphConv (D_IN => D_OUT)
74- for g in test_graphs
74+ for g in TEST_GRAPHS
7575 test_layer (l, g, rtol = RTOL_HIGH, outsize = (D_OUT, g. num_nodes))
7676 end
7777
7878 l = GraphConv (D_IN => D_OUT, tanh, bias = false , aggr = mean)
79- for g in test_graphs
79+ for g in TEST_GRAPHS
8080 test_layer (l, g, rtol = RTOL_HIGH, outsize = (D_OUT, g. num_nodes))
8181 end
8282
8383 @testset " bias=false" begin
84- @test length (Flux. params (GraphConv (2 => 3 ))) == 3
85- @test length (Flux. params (GraphConv (2 => 3 , bias = false ))) == 2
84+ @test length (Flux. trainables (GraphConv (2 => 3 ))) == 3
85+ @test length (Flux. trainables (GraphConv (2 => 3 , bias = false ))) == 2
8686 end
8787end
8888
8989@testset " GATConv" begin
9090 for heads in (1 , 2 ), concat in (true , false )
9191 l = GATConv (D_IN => D_OUT; heads, concat, dropout= 0 )
92- for g in test_graphs
92+ for g in TEST_GRAPHS
9393 test_layer (l, g, rtol = RTOL_LOW,
9494 exclude_grad_fields = [:negative_slope , :dropout ],
9595 outsize = (concat ? heads * D_OUT : D_OUT,
@@ -100,26 +100,26 @@ end
100100 @testset " edge features" begin
101101 ein = 3
102102 l = GATConv ((D_IN, ein) => D_OUT, add_self_loops = false , dropout= 0 )
103- g = GNNGraph (g1 , edata = rand (Float32, ein, g1 . num_edges))
103+ g = GNNGraph (TEST_GRAPHS[ 1 ] , edata = rand (Float32, ein, TEST_GRAPHS[ 1 ] . num_edges))
104104 test_layer (l, g, rtol = RTOL_LOW,
105105 exclude_grad_fields = [:negative_slope , :dropout ],
106106 outsize = (D_OUT, g. num_nodes))
107107 end
108108
109109 @testset " num params" begin
110110 l = GATConv (2 => 3 , add_self_loops = false )
111- @test length (Flux. params (l)) == 3
111+ @test length (Flux. trainables (l)) == 3
112112 l = GATConv ((2 , 4 ) => 3 , add_self_loops = false )
113- @test length (Flux. params (l)) == 4
113+ @test length (Flux. trainables (l)) == 4
114114 l = GATConv ((2 , 4 ) => 3 , add_self_loops = false , bias = false )
115- @test length (Flux. params (l)) == 3
115+ @test length (Flux. trainables (l)) == 3
116116 end
117117end
118118
119119@testset " GATv2Conv" begin
120120 for heads in (1 , 2 ), concat in (true , false )
121121 l = GATv2Conv (D_IN => D_OUT, tanh; heads, concat, dropout= 0 )
122- for g in test_graphs
122+ for g in TEST_GRAPHS
123123 test_layer (l, g, rtol = RTOL_LOW, atol= ATOL_LOW,
124124 exclude_grad_fields = [:negative_slope , :dropout ],
125125 outsize = (concat ? heads * D_OUT : D_OUT,
@@ -130,19 +130,19 @@ end
130130 @testset " edge features" begin
131131 ein = 3
132132 l = GATv2Conv ((D_IN, ein) => D_OUT, add_self_loops = false , dropout= 0 )
133- g = GNNGraph (g1 , edata = rand (Float32, ein, g1 . num_edges))
133+ g = GNNGraph (TEST_GRAPHS[ 1 ] , edata = rand (Float32, ein, TEST_GRAPHS[ 1 ] . num_edges))
134134 test_layer (l, g, rtol = RTOL_LOW, atol= ATOL_LOW,
135135 exclude_grad_fields = [:negative_slope , :dropout ],
136136 outsize = (D_OUT, g. num_nodes))
137137 end
138138
139139 @testset " num params" begin
140140 l = GATv2Conv (2 => 3 , add_self_loops = false )
141- @test length (Flux. params (l)) == 5
141+ @test length (Flux. trainables (l)) == 5
142142 l = GATv2Conv ((2 , 4 ) => 3 , add_self_loops = false )
143- @test length (Flux. params (l)) == 6
143+ @test length (Flux. trainables (l)) == 6
144144 l = GATv2Conv ((2 , 4 ) => 3 , add_self_loops = false , bias = false )
145- @test length (Flux. params (l)) == 4
145+ @test length (Flux. trainables (l)) == 4
146146 end
147147end
148148
@@ -151,14 +151,14 @@ end
151151 l = GatedGraphConv (D_OUT, num_layers)
152152 @test size (l. weight) == (D_OUT, D_OUT, num_layers)
153153
154- for g in test_graphs
154+ for g in TEST_GRAPHS
155155 test_layer (l, g, rtol = RTOL_HIGH, outsize = (D_OUT, g. num_nodes))
156156 end
157157end
158158
159159@testset " EdgeConv" begin
160160 l = EdgeConv (Dense (2 * D_IN, D_OUT), aggr = + )
161- for g in test_graphs
161+ for g in TEST_GRAPHS
162162 test_layer (l, g, rtol = RTOL_HIGH, outsize = (D_OUT, g. num_nodes))
163163 end
164164end
167167 nn = Dense (D_IN, D_OUT)
168168
169169 l = GINConv (nn, 0.01f0 , aggr = mean)
170- for g in test_graphs
170+ for g in TEST_GRAPHS
171171 test_layer (l, g, rtol = RTOL_HIGH, outsize = (D_OUT, g. num_nodes))
172172 end
173173
179179 nn = Dense (edim, D_OUT * D_IN)
180180
181181 l = NNConv (D_IN => D_OUT, nn, tanh, bias = true , aggr = + )
182- for g in test_graphs
182+ for g in TEST_GRAPHS
183183 g = GNNGraph (g, edata = rand (Float32, edim, g. num_edges))
184184 test_layer (l, g, rtol = RTOL_HIGH, outsize = (D_OUT, g. num_nodes))
185185 end
@@ -190,28 +190,29 @@ end
190190 @test l. aggr == mean
191191
192192 l = SAGEConv (D_IN => D_OUT, tanh, bias = false , aggr = + )
193- for g in test_graphs
193+ for g in TEST_GRAPHS
194194 test_layer (l, g, rtol = RTOL_HIGH, outsize = (D_OUT, g. num_nodes))
195195 end
196196end
197197
198198@testset " ResGatedGraphConv" begin
199199 l = ResGatedGraphConv (D_IN => D_OUT, tanh, bias = true )
200- for g in test_graphs
200+ for g in TEST_GRAPHS
201201 test_layer (l, g, rtol = RTOL_HIGH, outsize = (D_OUT, g. num_nodes))
202202 end
203203end
204204
205205@testset " CGConv" begin
206206 edim = 10
207207 l = CGConv ((D_IN, edim) => D_OUT, tanh, residual = false , bias = true )
208- for g in test_graphs
208+ for g in TEST_GRAPHS
209209 g = GNNGraph (g, edata = rand (Float32, edim, g. num_edges))
210210 test_layer (l, g, rtol = RTOL_HIGH, outsize = (D_OUT, g. num_nodes))
211211 end
212212
213213 # no edge features
214214 l1 = CGConv (D_IN => D_OUT, tanh, residual = false , bias = true )
215+ g1 = TEST_GRAPHS[1 ]
215216 @test l1 (g1, g1. ndata. x) == l1 (g1). ndata. x
216217 @test l1 (g1, g1. ndata. x, nothing ) == l1 (g1). ndata. x
217218end
@@ -228,14 +229,14 @@ end
228229 @test l. add_self_loops == true
229230 @test l. trainable == true
230231 Flux. trainable (l) == (; β = [1f0 ])
231- for g in test_graphs
232+ for g in TEST_GRAPHS
232233 test_layer (l, g, rtol = RTOL_HIGH, outsize = (D_IN, g. num_nodes))
233234 end
234235end
235236
236237@testset " MEGNetConv" begin
237238 l = MEGNetConv (D_IN => D_OUT, aggr = + )
238- for g in test_graphs
239+ for g in TEST_GRAPHS
239240 g = GNNGraph (g, edata = rand (Float32, D_IN, g. num_edges))
240241 test_layer (l, g, rtol = RTOL_LOW,
241242 outtype = :node_edge ,
247248 ein_channel = 10
248249 K = 5
249250 l = GMMConv ((D_IN, ein_channel) => D_OUT, K = K)
250- for g in test_graphs
251+ for g in TEST_GRAPHS
251252 g = GNNGraph (g, edata = rand (Float32, ein_channel, g. num_edges))
252253 test_layer (l, g, rtol = RTOL_HIGH, outsize = (D_OUT, g. num_nodes))
253254 end
@@ -257,12 +258,12 @@ end
257258 K = [1 , 2 , 3 ] # for different number of hops
258259 for k in K
259260 l = SGConv (D_IN => D_OUT, k, add_self_loops = true )
260- for g in test_graphs
261+ for g in TEST_GRAPHS
261262 test_layer (l, g, rtol = RTOL_HIGH, outsize = (D_OUT, g. num_nodes))
262263 end
263264
264265 l = SGConv (D_IN => D_OUT, k, add_self_loops = true )
265- for g in test_graphs
266+ for g in TEST_GRAPHS
266267 test_layer (l, g, rtol = RTOL_HIGH, outsize = (D_OUT, g. num_nodes))
267268 end
268269 end
@@ -272,12 +273,12 @@ end
272273 K = [1 , 2 , 3 ]
273274 for k in K
274275 l = TAGConv (D_IN => D_OUT, k, add_self_loops = true )
275- for g in test_graphs
276+ for g in TEST_GRAPHS
276277 test_layer (l, g, rtol = RTOL_HIGH, outsize = (D_OUT, g. num_nodes))
277278 end
278279
279280 l = TAGConv (D_IN => D_OUT, k, add_self_loops = true )
280- for g in test_graphs
281+ for g in TEST_GRAPHS
281282 test_layer (l, g, rtol = RTOL_HIGH, outsize = (D_OUT, g. num_nodes))
282283 end
283284 end
313314 # used like in Shi et al., 2021
314315 l = TransformerConv ((D_IN, ein) => D_IN; heads, gating = true ,
315316 bias_qkv = true )
316- for g in test_graphs
317+ for g in TEST_GRAPHS
317318 g = GNNGraph (g, edata = rand (Float32, ein, g. num_edges))
318319 test_layer (l, g, rtol = RTOL_LOW,
319320 exclude_grad_fields = [:negative_slope ],
323324 l = TransformerConv (D_IN => D_IN; heads, concat = false ,
324325 bias_root = false ,
325326 root_weight = false )
326- for g in test_graphs
327+ for g in TEST_GRAPHS
327328 test_layer (l, g, rtol = RTOL_LOW,
328329 exclude_grad_fields = [:negative_slope ],
329330 outsize = (D_IN, g. num_nodes))
334335 K = [1 , 2 , 3 ] # for different number of hops
335336 for k in K
336337 l = DConv (D_IN => D_OUT, k)
337- for g in test_graphs
338+ for g in TEST_GRAPHS
338339 test_layer (l, g, rtol = RTOL_HIGH, outsize = (D_OUT, g. num_nodes))
339340 end
340341 end
0 commit comments