|
2 | 2 |
|
3 | 3 | GNNLux.jl is a work-in-progress package that implements stateless graph convolutional layers, fully compatible with the [Lux.jl](https://lux.csail.mit.edu/stable/) machine learning framework. It is built on top of the GNNGraphs.jl, GNNlib.jl, and Lux.jl packages. |
4 | 4 |
|
5 | | -The full documentation will be available soon. |
| 5 | +## Package overview |
| 6 | + |
| 7 | +Let's give a brief overview of the package by solving a graph regression problem with synthetic data. |
| 8 | + |
| 9 | +### Data preparation |
| 10 | + |
| 11 | +We create a dataset consisting in multiple random graphs and associated data features. |
| 12 | + |
| 13 | +```julia |
| 14 | +using GNNLux, Lux, Statistics, MLUtils, Random |
| 15 | +using Zygote, Optimizers |
| 16 | + |
| 17 | +all_graphs = GNNGraph[] |
| 18 | + |
| 19 | +for _ in 1:1000 |
| 20 | + g = rand_graph(10, 40, |
| 21 | + ndata=(; x = randn(Float32, 16,10)), # Input node features |
| 22 | + gdata=(; y = randn(Float32))) # Regression target |
| 23 | + push!(all_graphs, g) |
| 24 | +end |
| 25 | +``` |
| 26 | + |
| 27 | +### Model building |
| 28 | + |
| 29 | +We concisely define our model as a [`GNNLux.GNNChain`](@ref) containing two graph convolutional layers. If CUDA is available, our model will live on the gpu. |
| 30 | + |
| 31 | +```julia |
| 32 | +device = CUDA.functional() ? Lux.gpu_device() : Lux.cpu_device() |
| 33 | +rng = Random.default_rng() |
| 34 | + |
| 35 | +model = GNNChain(GCNConv(16 => 64), |
| 36 | + x -> relu.(x), |
| 37 | + GCNConv(64 => 64, relu), |
| 38 | + GlobalMeanPool(), # Aggregate node-wise features into graph-wise features |
| 39 | + Dense(64, 1)) |
| 40 | + |
| 41 | +ps, st = LuxCore.setup(rng, model) |
| 42 | +``` |
| 43 | + |
| 44 | +### Training |
| 45 | + |
| 46 | + |
| 47 | +```julia |
| 48 | +train_graphs, test_graphs = MLUtils.splitobs(all_graphs, at=0.8) |
| 49 | + |
| 50 | +train_loader = MLUtils.DataLoader(train_graphs, |
| 51 | + batchsize=32, shuffle=true, collate=true) |
| 52 | +test_loader = MLUtils.DataLoader(test_graphs, |
| 53 | + batchsize=32, shuffle=false, collate=true) |
| 54 | + |
| 55 | +for epoch in 1:100 |
| 56 | + for g in train_loader |
| 57 | + g = g |> device |
| 58 | + grad = gradient(model -> loss(model, g), model) |
| 59 | + Flux.update!(opt, model, grad[1]) |
| 60 | + end |
| 61 | + |
| 62 | + @info (; epoch, train_loss=loss(model, train_loader), test_loss=loss(model, test_loader)) |
| 63 | +end |
| 64 | + |
| 65 | +function train_model!(model, ps, st, train_loader) |
| 66 | + train_state = Lux.Training.TrainState(model, ps, st, Adam(0.001f0)) |
| 67 | + |
| 68 | + for iter in 1:1000 |
| 69 | + for g in train_loader |
| 70 | + _, loss, _, train_state = Lux.Training.single_train_step!(AutoZygote(), MSELoss(), |
| 71 | + ((g, g.x)...,g.y), train_state) |
| 72 | + if iter % 100 == 1 || iter == 1000 |
| 73 | + @info "Iteration: %04d \t Loss: %10.9g\n" iter loss |
| 74 | + end |
| 75 | + end |
| 76 | + end |
| 77 | + |
| 78 | + return model, ps, st |
| 79 | +end |
| 80 | + |
| 81 | +train_model!(model, ps, st, train_loader) |
| 82 | +``` |
0 commit comments