You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
\mathbf{h}^{(l)}_i &= GRU(\mathbf{h}^{(l-1)}_i, \square_{j \in N(i)} W \mathbf{h}^{(l-1)}_j)
1200
+
\end{aligned}
1201
+
```
1202
+
1203
+
where ``\mathbf{h}^{(l)}_i`` denotes the ``l``-th hidden variables passing through GRU. The dimension of input ``\mathbf{x}_i`` needs to be less or equal to `out`.
1204
+
1205
+
# Arguments
1206
+
1207
+
- `out`: The dimension of output features.
1208
+
- `num_layers`: The number of recursion steps.
1209
+
- `aggr`: Aggregation operator for the incoming messages (e.g. `+`, `*`, `max`, `min`, and `mean`).
0 commit comments