Skip to content

Commit 9a58474

Browse files
fix docs (#467)
1 parent 11515eb commit 9a58474

File tree

4 files changed

+16
-24
lines changed

4 files changed

+16
-24
lines changed

GNNlib/src/msgpass.jl

Lines changed: 4 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -1,15 +1,12 @@
11
"""
2-
propagate(fmsg, g, aggr [layer]; [xi, xj, e])
3-
propagate(fmsg, g, aggr, [layer,] xi, xj, e=nothing)
2+
propagate(fmsg, g, aggr; [xi, xj, e])
3+
propagate(fmsg, g, aggr xi, xj, e=nothing)
44
55
Performs message passing on graph `g`. Takes care of materializing the node features on each edge,
66
applying the message function `fmsg`, and returning an aggregated message ``\\bar{\\mathbf{m}}``
77
(depending on the return value of `fmsg`, an array or a named tuple of
88
arrays with last dimension's size `g.num_nodes`).
99
10-
If also a [`GNNLayer`](@ref) `layer` is provided, it will be passed to `fmsg`
11-
as a first argument.
12-
1310
It can be decomposed in two steps:
1411
1512
```julia
@@ -35,10 +32,8 @@ providing as input `f` a closure.
3532
with the same batch size. If also `layer` is passed to propagate,
3633
the signature of `fmsg` has to be `fmsg(layer, xi, xj, e)`
3734
instead of `fmsg(xi, xj, e)`.
38-
- `layer`: A [`GNNLayer`](@ref). If provided it will be passed to `fmsg` as a first argument.
3935
- `aggr`: Neighborhood aggregation operator. Use `+`, `mean`, `max`, or `min`.
4036
41-
4237
# Examples
4338
4439
```julia
@@ -86,8 +81,8 @@ end
8681
## APPLY EDGES
8782

8883
"""
89-
apply_edges(fmsg, g, [layer]; [xi, xj, e])
90-
apply_edges(fmsg, g, [layer,] xi, xj, e=nothing)
84+
apply_edges(fmsg, g; [xi, xj, e])
85+
apply_edges(fmsg, g, xi, xj, e=nothing)
9186
9287
Returns the message from node `j` to node `i` applying
9388
the message function `fmsg` on the edges in graph `g`.
@@ -99,9 +94,6 @@ The function `fmsg` operates on batches of edges, therefore
9994
`xi`, `xj`, and `e` are tensors whose last dimension
10095
is the batch size, or can be named tuples of
10196
such tensors.
102-
103-
If also a [`GNNLayer`](@ref) `layer` is provided, it will be passed to `fmsg`
104-
as a first argument.
10597
10698
# Arguments
10799
@@ -117,7 +109,6 @@ as a first argument.
117109
with the same batch size. If also `layer` is passed to propagate,
118110
the signature of `fmsg` has to be `fmsg(layer, xi, xj, e)`
119111
instead of `fmsg(xi, xj, e)`.
120-
- `layer`: A [`GNNLayer`](@ref). If provided it will be passed to `fmsg` as a first argument.
121112
122113
See also [`propagate`](@ref) and [`aggregate_neighbors`](@ref).
123114
"""

docs/Project.toml

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,7 @@ Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
44
DocumenterInterLinks = "d12716ef-a0f6-4df4-a9f1-a5a34e75c656"
55
Flux = "587475ba-b771-5e3f-ad9e-33799f191a9c"
66
GNNGraphs = "aed8fd31-079b-4b5a-b342-a13352159b8c"
7+
GNNlib = "a6a84749-d869-43f8-aacc-be26a1996e48"
78
GraphNeuralNetworks = "cffab07f-9bc2-4db1-8861-388f63bf7694"
89
Graphs = "86223c79-3864-5bf0-83f7-82e725a168b6"
910
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"

docs/make.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@ prettyurls = get(ENV, "CI", nothing) == "true"
2626
mathengine = MathJax3()
2727

2828
makedocs(;
29-
modules = [GraphNeuralNetworks, GNNGraphs],
29+
modules = [GraphNeuralNetworks, GNNGraphs, GNNlib],
3030
doctest = false,
3131
clean = true,
3232
plugins = [interlinks],

docs/src/api/messagepassing.md

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -14,19 +14,19 @@ Pages = ["messagepassing.md"]
1414
## Interface
1515

1616
```@docs
17-
apply_edges
18-
aggregate_neighbors
19-
propagate
17+
GNNlib.apply_edges
18+
GNNlib.aggregate_neighbors
19+
GNNlib.propagate
2020
```
2121

2222
## Built-in message functions
2323

2424
```@docs
25-
copy_xi
26-
copy_xj
27-
xi_dot_xj
28-
xi_sub_xj
29-
xj_sub_xi
30-
e_mul_xj
31-
w_mul_xj
25+
GNNlib.copy_xi
26+
GNNlib.copy_xj
27+
GNNlib.xi_dot_xj
28+
GNNlib.xi_sub_xj
29+
GNNlib.xj_sub_xi
30+
GNNlib.e_mul_xj
31+
GNNlib.w_mul_xj
3232
```

0 commit comments

Comments
 (0)