@@ -9,10 +9,10 @@ operators, gpu movement, and storage of node/edge/graph related feature arrays.
9
9
A GNNGraph can be created from several different data sources encoding the graph topology:
10
10
11
11
``` julia
12
- using GraphNeuralNetworks, LightGraphs , SparseArrays
12
+ using GraphNeuralNetworks, Graphs , SparseArrays
13
13
14
14
15
- # Construct GNNGraph from From LightGraphs 's graph
15
+ # Construct GNNGraph from From Graphs 's graph
16
16
lg = erdos_renyi (10 , 30 )
17
17
g = GNNGraph (lg)
18
18
@@ -70,7 +70,7 @@ g.ndata.y, g.ndata.x
70
70
71
71
# Attach an array with edge features.
72
72
# Since `GNNGraph`s are directed, the number of edges
73
- # will be double that of the original LightGraphs ' undirected graph.
73
+ # will be double that of the original Graphs ' undirected graph.
74
74
g = GNNGraph (erdos_renyi (10 , 30 ), edata = rand (Float32, 60 ))
75
75
@assert g. num_edges == 60
76
76
@@ -134,10 +134,10 @@ g′ = remove_self_loops(g)
134
134
135
135
## JuliaGraphs ecosystem integration
136
136
137
- Since ` GNNGraph <: LightGraphs .AbstractGraph ` , we can use any functionality from LightGraphs .
137
+ Since ` GNNGraph <: Graphs .AbstractGraph ` , we can use any functionality from Graphs .
138
138
139
139
``` julia
140
- @assert LightGraphs . isdirected (g)
140
+ @assert Graphs . isdirected (g)
141
141
```
142
142
143
143
## GPU movement
0 commit comments