|
27 | 27 | @testset "GCNConv" begin
|
28 | 28 | l = GCNConv(in_channel => out_channel)
|
29 | 29 | for g in test_graphs
|
30 |
| - gradtest(l, g, rtol=1e-5) |
| 30 | + test_layer(l, g, rtol=1e-5) |
31 | 31 | end
|
32 | 32 |
|
33 | 33 | l = GCNConv(in_channel => out_channel, tanh, bias=false)
|
34 | 34 | for g in test_graphs
|
35 |
| - gradtest(l, g, rtol=1e-5) |
| 35 | + test_layer(l, g, rtol=1e-5) |
36 | 36 | end
|
37 | 37 | end
|
38 | 38 |
|
|
45 | 45 | @test l.k == k
|
46 | 46 | for g in test_graphs
|
47 | 47 | if g === g_single_vertex && GRAPH_T == :dense
|
48 |
| - @test_broken gradtest(l, g, rtol=1e-5, broken_grad_fields=[:weight], test_gpu=false) |
| 48 | + @test_broken test_layer(l, g, rtol=1e-5, broken_grad_fields=[:weight], test_gpu=false) |
49 | 49 | else
|
50 |
| - gradtest(l, g, rtol=1e-5, broken_grad_fields=[:weight], test_gpu=false) |
51 |
| - @test_broken gradtest(l, g, rtol=1e-5, broken_grad_fields=[:weight], test_gpu=true) |
| 50 | + test_layer(l, g, rtol=1e-5, broken_grad_fields=[:weight], test_gpu=false) |
| 51 | + @test_broken test_layer(l, g, rtol=1e-5, broken_grad_fields=[:weight], test_gpu=true) |
52 | 52 | end
|
53 | 53 | end
|
54 | 54 |
|
|
61 | 61 | @testset "GraphConv" begin
|
62 | 62 | l = GraphConv(in_channel => out_channel)
|
63 | 63 | for g in test_graphs
|
64 |
| - gradtest(l, g, rtol=1e-5) |
| 64 | + test_layer(l, g, rtol=1e-5) |
65 | 65 | end
|
66 | 66 |
|
67 | 67 | l = GraphConv(in_channel => out_channel, relu, bias=false)
|
68 | 68 | for g in test_graphs
|
69 |
| - gradtest(l, g, rtol=1e-5) |
| 69 | + test_layer(l, g, rtol=1e-5) |
70 | 70 | end
|
71 | 71 |
|
72 | 72 | @testset "bias=false" begin
|
|
80 | 80 | for heads in (1, 2), concat in (true, false)
|
81 | 81 | l = GATConv(in_channel => out_channel; heads, concat)
|
82 | 82 | for g in test_graphs
|
83 |
| - gradtest(l, g, rtol=1e-4) |
| 83 | + test_layer(l, g, rtol=1e-4) |
84 | 84 | end
|
85 | 85 | end
|
86 | 86 |
|
|
96 | 96 | @test size(l.weight) == (out_channel, out_channel, num_layers)
|
97 | 97 |
|
98 | 98 | for g in test_graphs
|
99 |
| - gradtest(l, g, rtol=1e-5) |
| 99 | + test_layer(l, g, rtol=1e-5) |
100 | 100 | end
|
101 | 101 | end
|
102 | 102 |
|
103 | 103 | @testset "EdgeConv" begin
|
104 | 104 | l = EdgeConv(Dense(2*in_channel, out_channel), aggr=+)
|
105 | 105 | for g in test_graphs
|
106 |
| - gradtest(l, g, rtol=1e-5) |
| 106 | + test_layer(l, g, rtol=1e-5) |
107 | 107 | end
|
108 | 108 | end
|
109 | 109 |
|
|
112 | 112 | eps = 0.001f0
|
113 | 113 | l = GINConv(nn, eps=eps)
|
114 | 114 | for g in test_graphs
|
115 |
| - gradtest(l, g, rtol=1e-5, exclude_grad_fields=[:eps]) |
| 115 | + test_layer(l, g, rtol=1e-5, exclude_grad_fields=[:eps]) |
116 | 116 | end
|
117 | 117 |
|
118 | 118 | @test !in(:eps, Flux.trainable(l))
|
|
125 | 125 | l = NNConv(in_channel => out_channel, nn)
|
126 | 126 | for g in test_graphs
|
127 | 127 | g = GNNGraph(g, edata=rand(T, edim, g.num_edges))
|
128 |
| - gradtest(l, g, rtol=1e-5) |
| 128 | + test_layer(l, g, rtol=1e-5) |
129 | 129 | end
|
130 | 130 |
|
131 | 131 | l = NNConv(in_channel => out_channel, nn, tanh, bias=false, aggr=mean)
|
132 | 132 | for g in test_graphs
|
133 | 133 | g = GNNGraph(g, edata=rand(T, edim, g.num_edges))
|
134 |
| - gradtest(l, g, rtol=1e-5) |
| 134 | + test_layer(l, g, rtol=1e-5) |
135 | 135 | end
|
136 | 136 | end
|
137 | 137 | end
|
0 commit comments