Skip to content

Commit bb479fa

Browse files
authored
Fix small typos (#235)
1 parent 5a48117 commit bb479fa

File tree

7 files changed

+10
-10
lines changed

7 files changed

+10
-10
lines changed

docs/src/gnngraph.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -221,7 +221,7 @@ using Flux: gpu
221221
g_gpu = g |> gpu
222222
```
223223

224-
## Integraton with Graphs.jl integration
224+
## Integration with Graphs.jl
225225

226226
Since `GNNGraph <: Graphs.AbstractGraph`, we can use any functionality from [Graphs.jl](https://github.com/JuliaGraphs/Graphs.jl) for querying and analyzing the graph structure.
227227
Moreover, a `GNNGraph` can be easily constructed from a `Graphs.Graph` or a `Graphs.DiGraph`:

perf/perf.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -49,8 +49,8 @@ end
4949
layers = [GCNConv, GraphConv, GATConv]
5050
)
5151
52-
Benchmark GNN layers on Erdos-Renyi ranomd graphs
53-
with average degree `c`. Benchmarks are perfomed for each graph size in the list `Ns`.
52+
Benchmark GNN layers on Erdos-Renyi random graphs
53+
with average degree `c`. Benchmarks are performed for each graph size in the list `Ns`.
5454
`D` is the number of node features.
5555
"""
5656
function run_benchmarks(;

src/GNNGraphs/generate.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -102,7 +102,7 @@ to its `k` closest `points`.
102102
103103
- `points`: A num_features × num_nodes matrix storing the Euclidean positions of the nodes.
104104
- `k`: The number of neighbors considered in the kNN algorithm.
105-
- `graph_indicator`: Either nothing or a vector containing the graph assigment of each node,
105+
- `graph_indicator`: Either nothing or a vector containing the graph assignment of each node,
106106
in which case the returned graph will be a batch of graphs.
107107
- `self_loops`: If `true`, consider the node itself among its `k` nearest neighbors, in which
108108
case the graph will contain self-loops.
@@ -184,7 +184,7 @@ to its neighbors within a given distance `r`.
184184
185185
- `points`: A num_features × num_nodes matrix storing the Euclidean positions of the nodes.
186186
- `r`: The radius.
187-
- `graph_indicator`: Either nothing or a vector containing the graph assigment of each node,
187+
- `graph_indicator`: Either nothing or a vector containing the graph assignment of each node,
188188
in which case the returned graph will be a batch of graphs.
189189
- `self_loops`: If `true`, consider the node itself among its neighbors, in which
190190
case the graph will contain self-loops.

src/GNNGraphs/gnngraph.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -60,7 +60,7 @@ functionality from that library.
6060
- `dir`: The assumed edge direction when given adjacency matrix or adjacency list input data `g`.
6161
Possible values are `:out` and `:in`. Default `:out`.
6262
- `num_nodes`: The number of nodes. If not specified, inferred from `g`. Default `nothing`.
63-
- `graph_indicator`: For batched graphs, a vector containing the graph assigment of each node. Default `nothing`.
63+
- `graph_indicator`: For batched graphs, a vector containing the graph assignment of each node. Default `nothing`.
6464
- `ndata`: Node features. An array or named tuple of arrays whose last dimension has size `num_nodes`.
6565
- `edata`: Edge features. An array or named tuple of arrays whose last dimension has size `num_edges`.
6666
- `gdata`: Graph features. An array or named tuple of arrays whose last dimension has size `num_graphs`.

src/GNNGraphs/gnnheterograph.jl

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -6,15 +6,15 @@ const NDict{T} = Dict{Symbol, T}
66
"""
77
GNNHeteroGraph(data; ndata, edata, gdata, num_nodes, graph_indicator, dir])
88
9-
A type representing a heterogeneus graph structure.
9+
A type representing a heterogeneous graph structure.
1010
it is similar [`GNNGraph`](@ref) but node and edges are of different types.
1111
1212
# Arguments
1313
1414
- `data`: A dictionary or an iterable object that maps (source_type, edge_type, target_type)
1515
triples to (source, target) index vectors.
1616
- `num_nodes`: The number of nodes for each type. If not specified, inferred from `g`. Default `nothing`.
17-
- `graph_indicator`: For batched graphs, a dictionary of vectors containing the graph assigment of each node. Default `nothing`.
17+
- `graph_indicator`: For batched graphs, a dictionary of vectors containing the graph assignment of each node. Default `nothing`.
1818
- `ndata`: Node features. A dictionary of arrays or named tuple of arrays.
1919
The size of the last dimension of each array must be given by `g.num_nodes`.
2020
- `edata`: Edge features. A dictionary of arrays or named tuple of arrays.

src/GNNGraphs/query.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -140,7 +140,7 @@ If `dir=:in` instead, `A[i,j] > 0` denotes the presence of an edge from node `j`
140140
141141
User may specify the eltype `T` of the returned matrix.
142142
143-
If `weighted=true`, the `A` will contain the edge weigths if any, otherwise the elements of `A` will be either 0 or 1.
143+
If `weighted=true`, the `A` will contain the edge weights if any, otherwise the elements of `A` will be either 0 or 1.
144144
"""
145145
function Graphs.adjacency_matrix(g::GNNGraph{<:COO_T}, T::DataType=eltype(g); dir=:out, weighted=true)
146146
if g.graph[1] isa CuVector

src/msgpass.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -277,7 +277,7 @@ end
277277

278278

279279
# function propagate(::typeof(copy_xj), g::GNNGraph, ::typeof(mean), xi, xj::AbstractMatrix, e)
280-
# A = adjacency_matrix(g, weigthed=false)
280+
# A = adjacency_matrix(g, weighted=false)
281281
# D = compute_degree(A)
282282
# return xj * A * D
283283
# end

0 commit comments

Comments
 (0)