@@ -133,10 +133,6 @@ function GNNGraph(data;
133
133
ndata, edata, gdata)
134
134
end
135
135
136
- normalize_graphdata (data:: NamedTuple , s) = data
137
- normalize_graphdata (data:: Nothing , s) = NamedTuple ()
138
- normalize_graphdata (data, s) = NamedTuple {(s,)} ((data,))
139
-
140
136
# COO convenience constructors
141
137
GNNGraph (s:: AbstractVector , t:: AbstractVector , v = nothing ; kws... ) = GNNGraph ((s, t, v); kws... )
142
138
GNNGraph ((s, t):: NTuple{2} ; kws... ) = GNNGraph ((s, t, nothing ); kws... )
@@ -161,7 +157,6 @@ function GNNGraph(g::GNNGraph; ndata=g.ndata, edata=g.edata, gdata=g.gdata)
161
157
ndata, edata, gdata)
162
158
end
163
159
164
-
165
160
"""
166
161
edge_index(g::GNNGraph)
167
162
@@ -172,19 +167,11 @@ the source and target nodes for each edges in `g`.
172
167
s, t = edge_index(g)
173
168
```
174
169
"""
175
- edge_index (g:: GNNGraph{<:COO_T} ) = graph (g)[1 : 2 ]
176
-
177
- edge_index (g:: GNNGraph{<:ADJMAT_T} ) = to_coo (graph (g))[1 ][1 : 2 ]
170
+ edge_index (g:: GNNGraph{<:COO_T} ) = g. graph[1 : 2 ]
178
171
179
- edge_weight (g:: GNNGraph{<:COO_T } ) = graph (g)[ 3 ]
172
+ edge_index (g:: GNNGraph{<:ADJMAT_T } ) = to_coo (g . graph)[ 1 ][ 1 : 2 ]
180
173
181
- """
182
- graph(g::GNNGraph)
183
-
184
- Return the underlying implementation of the graph structure of `g`,
185
- either an adjacency matrix or an edge list in the COO format.
186
- """
187
- graph (g:: GNNGraph ) = g. graph
174
+ edge_weight (g:: GNNGraph{<:COO_T} ) = g. graph[3 ]
188
175
189
176
LightGraphs. edges (g:: GNNGraph ) = zip (edge_index (g)... )
190
177
@@ -195,7 +182,7 @@ function LightGraphs.has_edge(g::GNNGraph{<:COO_T}, i::Integer, j::Integer)
195
182
return any ((s .== i) .& (t .== j))
196
183
end
197
184
198
- LightGraphs. has_edge (g:: GNNGraph{<:ADJMAT_T} , i:: Integer , j:: Integer ) = graph (g) [i,j] != 0
185
+ LightGraphs. has_edge (g:: GNNGraph{<:ADJMAT_T} , i:: Integer , j:: Integer ) = g . graph [i,j] != 0
199
186
200
187
LightGraphs. nv (g:: GNNGraph ) = g. num_nodes
201
188
LightGraphs. ne (g:: GNNGraph ) = g. num_edges
@@ -208,7 +195,7 @@ function LightGraphs.outneighbors(g::GNNGraph{<:COO_T}, i::Integer)
208
195
end
209
196
210
197
function LightGraphs. outneighbors (g:: GNNGraph{<:ADJMAT_T} , i:: Integer )
211
- A = graph (g)
198
+ A = g . graph
212
199
return findall (!= (0 ), A[i,:])
213
200
end
214
201
@@ -218,7 +205,7 @@ function LightGraphs.inneighbors(g::GNNGraph{<:COO_T}, i::Integer)
218
205
end
219
206
220
207
function LightGraphs. inneighbors (g:: GNNGraph{<:ADJMAT_T} , i:: Integer )
221
- A = graph (g)
208
+ A = g . graph
222
209
return findall (!= (0 ), A[:,i])
223
210
end
224
211
@@ -232,14 +219,14 @@ function adjacency_list(g::GNNGraph; dir=:out)
232
219
end
233
220
234
221
function LightGraphs. adjacency_matrix (g:: GNNGraph{<:COO_T} , T:: DataType = Int; dir= :out )
235
- A, n, m = to_sparse (graph (g) , T, num_nodes= g. num_nodes)
222
+ A, n, m = to_sparse (g . graph , T, num_nodes= g. num_nodes)
236
223
@assert size (A) == (n, n)
237
224
return dir == :out ? A : A'
238
225
end
239
226
240
- function LightGraphs. adjacency_matrix (g:: GNNGraph{<:ADJMAT_T} , T:: DataType = eltype (graph (g) ); dir= :out )
227
+ function LightGraphs. adjacency_matrix (g:: GNNGraph{<:ADJMAT_T} , T:: DataType = eltype (g . graph ); dir= :out )
241
228
@assert dir ∈ [:in , :out ]
242
- A = graph (g)
229
+ A = g . graph
243
230
A = T != eltype (A) ? T .(A) : A
244
231
return dir == :out ? A : A'
245
232
end
0 commit comments