@@ -59,16 +59,13 @@ Returns the updated node features:
5959The following example considers a static graph and a time-varying node features.
6060
6161```jldoctest
62- julia> num_nodes, num_edges = 5, 10 ;
62+ julia> num_nodes, num_edges = 5, 16 ;
6363
6464julia> d_in, d_out = 2, 3;
6565
6666julia> timesteps = 5;
6767
6868julia> g = rand_graph(num_nodes, num_edges);
69- GNNGraph:
70- num_nodes: 5
71- num_edges: 10
7269
7370julia> x = rand(Float32, d_in, timesteps, num_nodes);
7471
@@ -93,11 +90,15 @@ julia> timesteps = 5;
9390
9491julia> num_nodes = [10, 10, 10, 10, 10];
9592
96- julia> num_edges = [10, 12, 14, 16, 18 ];
93+ julia> num_edges = [20, 22, 24, 26, 28 ];
9794
9895julia> snapshots = [rand_graph(n, m) for (n, m) in zip(num_nodes, num_edges)];
9996
10097julia> tg = TemporalSnapshotsGNNGraph(snapshots)
98+ TemporalSnapshotsGNNGraph:
99+ num_nodes: [10, 10, 10, 10, 10]
100+ num_edges: [20, 22, 24, 26, 28]
101+ num_snapshots: 5
101102
102103julia> x = [rand(Float32, d_in, n) for n in num_nodes];
103104
@@ -269,7 +270,7 @@ See [`GNNRecurrence`](@ref) for more details.
269270# Examples
270271
271272```jldoctest
272- julia> num_nodes, num_edges = 5, 10 ;
273+ julia> num_nodes, num_edges = 5, 16 ;
273274
274275julia> d_in, d_out = 2, 3;
275276
@@ -280,7 +281,7 @@ julia> g = rand_graph(num_nodes, num_edges);
280281julia> x = rand(Float32, d_in, timesteps, num_nodes);
281282
282283julia> layer = GConvGRU(d_in => d_out, 2)
283- GConvGRU (
284+ GNNRecurrence (
284285 GConvGRUCell(2 => 3, 2), # 108 parameters
285286) # Total: 12 arrays, 108 parameters, 1.148 KiB.
286287
@@ -326,9 +327,9 @@ where `output` is the updated hidden state `h` of the LSTM cell and `state` is t
326327# Examples
327328
328329```jldoctest
329- julia> using GraphNeuralNetworks, Flux
330+ julia> using Flux
330331
331- julia> num_nodes, num_edges = 5, 10 ;
332+ julia> num_nodes, num_edges = 5, 16 ;
332333
333334julia> d_in, d_out = 2, 3;
334335
@@ -453,7 +454,7 @@ See [`GNNRecurrence`](@ref) for more details.
453454# Examples
454455
455456```jldoctest
456- julia> num_nodes, num_edges = 5, 10 ;
457+ julia> num_nodes, num_edges = 5, 16 ;
457458
458459julia> d_in, d_out = 2, 3;
459460
@@ -727,23 +728,27 @@ julia> timesteps = 5;
727728
728729julia> num_nodes = [10, 10, 10, 10, 10];
729730
730- julia> num_edges = [10, 12, 14, 16, 18 ];
731+ julia> num_edges = [60, 62, 64, 66, 68 ];
731732
732733julia> snapshots = [rand_graph(n, m) for (n, m) in zip(num_nodes, num_edges)];
733734
734735julia> tg = TemporalSnapshotsGNNGraph(snapshots)
736+ TemporalSnapshotsGNNGraph:
737+ num_nodes: [10, 10, 10, 10, 10]
738+ num_edges: [60, 62, 64, 66, 68]
739+ num_snapshots: 5
735740
736741julia> x = [rand(Float32, d_in, n) for n in num_nodes];
737742
738- julia> cell = EvolveGCNO(d_in => d_out)
743+ julia> layer = EvolveGCNO(d_in => d_out)
739744GNNRecurrence(
740745 EvolveGCNOCell(2 => 3), # 321 parameters
741746) # Total: 5 arrays, 321 parameters, 1.535 KiB.
742747
743748julia> y = layer(tg, x);
744749
745750julia> length(y) # timesteps
746- 5
751+ 5
747752
748753julia> size(y[end]) # (d_out, num_nodes[end])
749754(3, 10)
@@ -874,6 +879,9 @@ julia> g = rand_graph(num_nodes, num_edges);
874879julia> x = rand(Float32, d_in, timesteps, num_nodes);
875880
876881julia> layer = TGCN(d_in => d_out)
882+ GNNRecurrence(
883+ TGCNCell(2 => 3), # 126 parameters
884+ ) # Total: 18 arrays, 126 parameters, 1.469 KiB.
877885
878886julia> y = layer(g, x);
879887
0 commit comments