@@ -59,16 +59,13 @@ Returns the updated node features:
5959The following example considers a static graph and a time-varying node features. 
6060
6161```jldoctest 
62- julia> num_nodes, num_edges = 5, 10 ; 
62+ julia> num_nodes, num_edges = 5, 16 ; 
6363
6464julia> d_in, d_out = 2, 3; 
6565
6666julia> timesteps = 5; 
6767
6868julia> g = rand_graph(num_nodes, num_edges); 
69- GNNGraph: 
70-   num_nodes: 5 
71-   num_edges: 10 
7269
7370julia> x = rand(Float32, d_in, timesteps, num_nodes); 
7471
@@ -93,11 +90,15 @@ julia> timesteps = 5;
9390
9491julia> num_nodes = [10, 10, 10, 10, 10]; 
9592
96- julia> num_edges = [10, 12, 14, 16, 18 ]; 
93+ julia> num_edges = [20, 22, 24, 26, 28 ]; 
9794
9895julia> snapshots = [rand_graph(n, m) for (n, m) in zip(num_nodes, num_edges)]; 
9996
10097julia> tg = TemporalSnapshotsGNNGraph(snapshots) 
98+ TemporalSnapshotsGNNGraph: 
99+   num_nodes: [10, 10, 10, 10, 10] 
100+   num_edges: [20, 22, 24, 26, 28] 
101+   num_snapshots: 5 
101102
102103julia> x = [rand(Float32, d_in, n) for n in num_nodes]; 
103104
@@ -269,7 +270,7 @@ See [`GNNRecurrence`](@ref) for more details.
269270# Examples 
270271
271272```jldoctest 
272- julia> num_nodes, num_edges = 5, 10 ; 
273+ julia> num_nodes, num_edges = 5, 16 ; 
273274
274275julia> d_in, d_out = 2, 3; 
275276
@@ -280,7 +281,7 @@ julia> g = rand_graph(num_nodes, num_edges);
280281julia> x = rand(Float32, d_in, timesteps, num_nodes); 
281282
282283julia> layer = GConvGRU(d_in => d_out, 2) 
283- GConvGRU (
284+ GNNRecurrence (
284285  GConvGRUCell(2 => 3, 2),              # 108 parameters 
285286)                   # Total: 12 arrays, 108 parameters, 1.148 KiB. 
286287
@@ -326,9 +327,9 @@ where `output` is the updated hidden state `h` of the LSTM cell and `state` is t
326327# Examples 
327328
328329```jldoctest 
329- julia> using GraphNeuralNetworks,  Flux 
330+ julia> using Flux 
330331
331- julia> num_nodes, num_edges = 5, 10 ; 
332+ julia> num_nodes, num_edges = 5, 16 ; 
332333
333334julia> d_in, d_out = 2, 3; 
334335
@@ -453,7 +454,7 @@ See [`GNNRecurrence`](@ref) for more details.
453454# Examples 
454455
455456```jldoctest 
456- julia> num_nodes, num_edges = 5, 10 ; 
457+ julia> num_nodes, num_edges = 5, 16 ; 
457458
458459julia> d_in, d_out = 2, 3; 
459460
@@ -727,23 +728,27 @@ julia> timesteps = 5;
727728
728729julia> num_nodes = [10, 10, 10, 10, 10]; 
729730
730- julia> num_edges = [10, 12, 14, 16, 18 ]; 
731+ julia> num_edges = [60, 62, 64, 66, 68 ]; 
731732
732733julia> snapshots = [rand_graph(n, m) for (n, m) in zip(num_nodes, num_edges)]; 
733734
734735julia> tg = TemporalSnapshotsGNNGraph(snapshots) 
736+ TemporalSnapshotsGNNGraph: 
737+   num_nodes: [10, 10, 10, 10, 10] 
738+   num_edges: [60, 62, 64, 66, 68] 
739+   num_snapshots: 5 
735740
736741julia> x = [rand(Float32, d_in, n) for n in num_nodes]; 
737742
738- julia> cell  = EvolveGCNO(d_in => d_out) 
743+ julia> layer  = EvolveGCNO(d_in => d_out) 
739744GNNRecurrence( 
740745  EvolveGCNOCell(2 => 3),               # 321 parameters 
741746)                   # Total: 5 arrays, 321 parameters, 1.535 KiB. 
742747
743748julia> y = layer(tg, x); 
744749
745750julia> length(y)    # timesteps 
746- 5   
751+ 5 
747752
748753julia> size(y[end]) # (d_out, num_nodes[end]) 
749754(3, 10) 
@@ -874,6 +879,9 @@ julia> g = rand_graph(num_nodes, num_edges);
874879julia> x = rand(Float32, d_in, timesteps, num_nodes); 
875880
876881julia> layer = TGCN(d_in => d_out) 
882+ GNNRecurrence( 
883+   TGCNCell(2 => 3),                     # 126 parameters 
884+ )                   # Total: 18 arrays, 126 parameters, 1.469 KiB. 
877885
878886julia> y = layer(g, x); 
879887
0 commit comments