|  | 
| 101 | 101 |     k = 2 | 
| 102 | 102 |     l = ChebConv(D_IN => D_OUT, k) | 
| 103 | 103 |     for g in TEST_GRAPHS | 
|  | 104 | +        has_isolated_nodes(g) && continue | 
| 104 | 105 |         g.graph isa AbstractSparseMatrix && continue | 
| 105 | 106 |         @test size(l(g, g.x)) == (D_OUT, g.num_nodes) | 
| 106 | 107 |         test_gradients(l, g, g.x, rtol = RTOL_LOW, test_gpu = true, compare_finite_diff = false) | 
|  | 
| 377 | 378 |     l = CGConv((D_IN, edim) => D_OUT, tanh, residual = false, bias = true) | 
| 378 | 379 |     for g in TEST_GRAPHS | 
| 379 | 380 |         g.graph isa AbstractSparseMatrix && continue | 
|  | 381 | +        g = GNNGraph(g, edata = rand(Float32, edim, g.num_edges)) | 
| 380 | 382 |         @test size(l(g, g.x, g.e)) == (D_OUT, g.num_nodes) | 
| 381 | 383 |         test_gradients(l, g, g.x, g.e, rtol = RTOL_HIGH, test_gpu = true, compare_finite_diff = false) | 
| 382 | 384 |     end    | 
|  | 
| 432 | 434 |     l = MEGNetConv(D_IN => D_OUT, aggr = +) | 
| 433 | 435 |     for g in TEST_GRAPHS | 
| 434 | 436 |         g.graph isa AbstractSparseMatrix && continue | 
|  | 437 | +        g = GNNGraph(g, edata = rand(Float32, D_IN, g.num_edges)) | 
| 435 | 438 |         y = l(g, g.x, g.e) | 
| 436 | 439 |         @test size(y[1]) == (D_OUT, g.num_nodes) | 
| 437 | 440 |         @test size(y[2]) == (D_OUT, g.num_edges) | 
|  | 
| 462 | 465 |     l = GMMConv((D_IN, ein_channel) => D_OUT, K = K) | 
| 463 | 466 |     for g in TEST_GRAPHS | 
| 464 | 467 |         g.graph isa AbstractSparseMatrix && continue | 
|  | 468 | +        g = GNNGraph(g, edata = rand(Float32, ein_channel, g.num_edges)) | 
| 465 | 469 |         y = l(g, g.x, g.e) | 
| 466 | 470 |         test_gradients(l, g, g.x, g.e, rtol = RTOL_HIGH, test_gpu = true, compare_finite_diff = false) | 
| 467 | 471 |     end    | 
|  | 
| 585 | 589 |                         bias_qkv = true) | 
| 586 | 590 |     for g in TEST_GRAPHS | 
| 587 | 591 |         g.graph isa AbstractSparseMatrix && continue | 
|  | 592 | +        g = GNNGraph(g, edata = rand(Float32, ein, g.num_edges)) | 
| 588 | 593 |         @test size(l(g, g.x, g.e)) == (D_IN * heads, g.num_nodes) | 
| 589 | 594 |         test_gradients(l, g, g.x, g.e, rtol = RTOL_LOW, test_gpu = true, compare_finite_diff = false) | 
| 590 | 595 |     end | 
|  | 
0 commit comments