Skip to content

GATConv reducing over empty collection #635

@lenianiva

Description

@lenianiva

I'm using GATConv inside a heterogeneous convolution layer:

function create_layer_hetero_conv(
    dims::Pair;
    activation = act,
)::HeteroGraphConv
    HeteroGraphConv(
        [
            (src, edge, dst) => GATConv(dims.first => dims.second, activation) for
            (src, edge, dst) in keys(EXAMPLE.edata)
        ];
        aggr = (x, y) -> max.(x, y),
    )
end

In my use case, some node types can have 0 nodes, and this led to

ERROR: LoadError: ArgumentError: reducing over an empty collection is not allowed; consider supplying `init` to the reducer

Stacktrace:
  [1] reduce_empty(op::Base.MappingRF{typeof(identity), typeof(max)}, ::Type{Int64})
    @ Base ./reduce.jl:350
  [2] _mapreduce
    @ ./reduce.jl:421 [inlined]
  [3] _mapreduce_dim
    @ ./reducedim.jl:334 [inlined]
  [4] mapreduce
    @ ./reducedim.jl:326 [inlined]
  [5] _maximum
    @ ./reducedim.jl:984 [inlined]
  [6] _maximum
    @ ./reducedim.jl:983 [inlined]
  [7] maximum
    @ ./reducedim.jl:979 [inlined]
  [8] maximum_dims
    @ ~/.julia/packages/NNlib/1TYHL/src/utils.jl:72 [inlined]
  [9] scatter(op::typeof(max), src::Array{Float32, 3}, idx::Vector{Int64}; init::Nothing, dstsize::Nothing)
    @ NNlib ~/.julia/packages/NNlib/1TYHL/src/scatter.jl:179
 [10] scatter
    @ ~/.julia/packages/NNlib/1TYHL/src/scatter.jl:174 [inlined]
 [11] softmax_edge_neighbors(g::GNNHeteroGraph{Tuple{Vector{Int64}, Vector{Int64}, Nothing}}, e::Array{Float32, 3})
    @ GNNlib ~/.julia/packages/GNNlib/StdFP/src/utils.jl:93
 [12] gat_conv(l::GATConv{Dense{typeof(identity), Matrix{Float32}, Bool}, Nothing, Float64, Float32, Matrix{Float32}, typeof(act), Vector{Float32}}, g::GNNHeteroGraph{Tuple{Vector{Int64}, Vector{Int64}, Nothing}}, x::Tuple{Matrix{Float32}, Matrix{Float32}}, e::Nothing)
    @ GNNlib ~/.julia/packages/GNNlib/StdFP/src/layers/conv.jl:138
 [13] GATConv
    @ ~/.julia/packages/GraphNeuralNetworks/nauyk/src/layers/conv.jl:346 [inlined]
 [14] (::GATConv{Dense{typeof(identity), Matrix{Float32}, Bool}, Nothing, Float64, Float32, Matrix{Float32}, typeof(act), Vector{Float32}})(g::GNNHeteroGraph{Tuple{Vector{Int64}, Vector{Int64}, Nothing}}, x::Tuple{Matrix{Float32}, Matrix{Float32}})
    @ GraphNeuralNetworks ~/.julia/packages/GraphNeuralNetworks/nauyk/src/layers/conv.jl:346
 [15] (::GraphNeuralNetworks.var"#forw#forw##0"{GNNHeteroGraph{Tuple{T, T, Union{Nothing, AbstractVector}} where T<:(AbstractVector{<:Integer})}, @NamedTuple{locus::Matrix{Float32}, constant::Matrix{Float32}, sort::Matrix{Float32}, literal::Matrix{Float32}, hole::Matrix{Float32}}})(l::GATConv{Dense{typeof(identity), Matrix{Float32}, Bool}, Nothing, Float64, Float32, Matrix{Float32}, typeof(act), Vector{Float32}}, et::Tuple{Symbol, Symbol, Symbol})
    @ GraphNeuralNetworks ~/.julia/packages/GraphNeuralNetworks/nauyk/src/layers/heteroconv.jl:61
 [16] #60
    @ ./none:-1 [inlined]
 [17] iterate
    @ ./generator.jl:48 [inlined]
 [18] collect(itr::Base.Generator{Base.Iterators.Zip{Tuple{Vector{GATConv{Dense{typeof(identity), Matrix{Float32}, Bool}, Nothing, Float64, Float32, Matrix{Float32}, typeof(act), Vector{Float32}}}, Vector{Tuple{Symbol, Symbol, Symbol}}}}, GraphNeuralNetworks.var"#60#61"{GraphNeuralNetworks.var"#forw#forw##0"{GNNHeteroGraph{Tuple{T, T, Union{Nothing, AbstractVector}} where T<:(AbstractVector{<:Integer})}, @NamedTuple{locus::Matrix{Float32}, constant::Matrix{Float32}, sort::Matrix{Float32}, literal::Matrix{Float32}, hole::Matrix{Float32}}}}})
    @ Base ./array.jl:790
 [19] (::HeteroGraphConv)(g::GNNHeteroGraph{Tuple{T, T, Union{Nothing, AbstractVector}} where T<:(AbstractVector{<:Integer})}, x::@NamedTuple{locus::Matrix{Float32}, constant::Matrix{Float32}, sort::Matrix{Float32}, literal::Matrix{Float32}, hole::Matrix{Float32}})
    @ GraphNeuralNetworks ~/.julia/packages/GraphNeuralNetworks/nauyk/src/layers/heteroconv.jl:63

How can I workaround this? The same problem doesn't occur if I just use GraphConv.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions