Skip to content

GATConv doesn't work on hetero graphs with empty edge arrays or during backpropagation #637

@lenianiva

Description

@lenianiva

e.g. (The dropout defaults to a 64-bit float which causes more problems but can be easily fixed)

using GNNGraphs, GraphNeuralNetworks, NNlib, Flux

graph = GNNHeteroGraph(
    Dict(
        (:A, :a, :B) => ([1, 2], [3, 4]),
        (:B, :a, :A) => ([1], [2]),
        (:C, :a, :A) => (Int[], Int[]),
        (:A, :a, :C) => (Int[], Int[]),
        (:D, :a, :A) => (Int[], Int[]),
        (:E, :a, :A) => (Int[], Int[]),
        (:E, :a, :D) => (Int[], Int[]),
        (:D, :a, :E) => (Int[], Int[]),
    );
    num_nodes = Dict(:A => 3, :B => 5, :C => 7, :D => 0, :E => 0)
)
layer = HeteroGraphConv(
    [
        (src, edge, dst) => GATConv(4 => 4, NNlib.elu; dropout = Float32(0.25)) for
        (src, edge, dst) in keys(graph.edata)
    ];
)
layer2 = HeteroGraphConv(
    [
        (src, edge, dst) => GATConv(4 => 4, NNlib.elu; dropout = Float32(0.25)) for
        (src, edge, dst) in keys(graph.edata)
    ];
)

x = (
    A = rand(Float32, 4, 3),
    B = rand(Float32, 4, 5),
    C = rand(Float32, 4, 7),
    D = rand(Float32, 4, 0),
    E = rand(Float32, 4, 0),
)

x1 = layer(graph, x)
x2 = layer2(graph, x1)
@info "$x2"

g = Flux.gradient(x) do x
    y = layer(graph, x)
    sum(y[:A])
end

The error is

ERROR: LoadError: DimensionMismatch: arrays could not be broadcast to a common size: a has axes Base.OneTo(0) and b has axes Base.OneTo(4)
Stacktrace:
  [1] _bcs1
    @ ./broadcast.jl:535 [inlined]
  [2] _bcs
    @ ./broadcast.jl:529 [inlined]
  [3] broadcast_shape
    @ ./broadcast.jl:523 [inlined]
  [4] combine_axes
    @ ./broadcast.jl:504 [inlined]
  [5] _axes
    @ ./broadcast.jl:240 [inlined]
  [6] axes
    @ ./broadcast.jl:238 [inlined]
  [7] combine_axes
    @ ./broadcast.jl:505 [inlined]
  [8] instantiate
    @ ./broadcast.jl:313 [inlined]
  [9] materialize
    @ ./broadcast.jl:894 [inlined]
 [10] gat_conv(l::GATConv{Flux.Dense{typeof(identity), Matrix{Float32}, Bool}, Nothing, Float32, Float32, Matrix{Float32}, typeof(elu), Vector{Float32}}, g::GNNHeteroGraph{Tuple{Vector{Int64}, Vector{Int64}, Nothing}}, x::Tuple{Matrix{Float32}, Matrix{Float32}}, e::Nothing)
    @ GNNlib ~/.julia/packages/GNNlib/wxiDz/src/layers/conv.jl:147
 [11] GATConv
    @ ~/.julia/packages/GraphNeuralNetworks/XGIXF/src/layers/conv.jl:346 [inlined]
 [12] (::GATConv{Flux.Dense{typeof(identity), Matrix{Float32}, Bool}, Nothing, Float32, Float32, Matrix{Float32}, typeof(elu), Vector{Float32}})(g::GNNHeteroGraph{Tuple{Vector{Int64}, Vector{Int64}, Nothing}}, x::Tuple{Matrix{Float32}, Matrix{Float32}})
    @ GraphNeuralNetworks ~/.julia/packages/GraphNeuralNetworks/XGIXF/src/layers/conv.jl:346
 [13] (::GraphNeuralNetworks.var"#forw#forw##0"{GNNHeteroGraph{Tuple{T, T, Union{Nothing, AbstractVector}} where T<:(AbstractVector{<:Integer})}, @NamedTuple{A::Matrix{Float32}, B::Matrix{Float32}, C::Matrix{Float32}, D::Matrix{Float32}, E::Matrix{Float32}}})(l::GATConv{Flux.Dense{typeof(identity), Matrix{Float32}, Bool}, Nothing, Float32, Float32, Matrix{Float32}, typeof(elu), Vector{Float32}}, et::Tuple{Symbol, Symbol, Symbol})
    @ GraphNeuralNetworks ~/.julia/packages/GraphNeuralNetworks/XGIXF/src/layers/heteroconv.jl:63
 [14] #60
    @ ./none:-1 [inlined]
 [15] iterate
    @ ./generator.jl:48 [inlined]
 [16] collect(itr::Base.Generator{Base.Iterators.Zip{Tuple{Vector{GATConv{Flux.Dense{typeof(identity), Matrix{Float32}, Bool}, Nothing, Float32, Float32, Matrix{Float32}, typeof(elu), Vector{Float32}}}, Vector{Tuple{Symbol, Symbol, Symbol}}}}, GraphNeuralNetworks.var"#60#61"{GraphNeuralNetworks.var"#forw#forw##0"{GNNHeteroGraph{Tuple{T, T, Union{Nothing, AbstractVector}} where T<:(AbstractVector{<:Integer})}, @NamedTuple{A::Matrix{Float32}, B::Matrix{Float32}, C::Matrix{Float32}, D::Matrix{Float32}, E::Matrix{Float32}}}}})
    @ Base ./array.jl:790
 [17] (::HeteroGraphConv)(g::GNNHeteroGraph{Tuple{T, T, Union{Nothing, AbstractVector}} where T<:(AbstractVector{<:Integer})}, x::@NamedTuple{A::Matrix{Float32}, B::Matrix{Float32}, C::Matrix{Float32}, D::Matrix{Float32}, E::Matrix{Float32}})
    @ GraphNeuralNetworks ~/.julia/packages/GraphNeuralNetworks/XGIXF/src/layers/heteroconv.jl:65

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions