@@ -129,13 +129,13 @@ end
129
129
" maps 1:binomial(n,2) into an upper triangle of [1,n]×[1,n]"
130
130
function trianglemap (r, n)
131
131
j, i = fldmod1 (r, n - 1 )
132
- i ≥ j ? Edge (i + 1 , j) : Edge (n - i + 1 , n - j + 1 )
132
+ return i ≥ j ? Edge (i + 1 , j) : Edge (n - i + 1 , n - j + 1 )
133
133
end
134
134
135
135
" maps 1:n*(n-1) into non-diagonal elements of [1,n]×[1,n]"
136
136
function nondiagmap (r, n)
137
137
i, j = fldmod1 (r, n - 1 )
138
- Edge (i + (i ≥ j), j)
138
+ return Edge (i + (i ≥ j), j)
139
139
end
140
140
141
141
"""
@@ -175,9 +175,9 @@ function erdos_renyi(
175
175
m = is_directed ? n * (n - 1 ) : binomial (n, 2 )
176
176
seq = randsubseq (rng_from_rng_or_seed (rng, seed), 1 : m, p)
177
177
g = if is_directed
178
- SimpleDiGraphFromIterator (nondiagmap (r,n) for r in seq)
178
+ SimpleDiGraphFromIterator (nondiagmap (r, n) for r in seq)
179
179
else
180
- SimpleGraphFromIterator (trianglemap (r,n) for r in seq)
180
+ SimpleGraphFromIterator (trianglemap (r, n) for r in seq)
181
181
end
182
182
# complete to exactly n vertices
183
183
add_vertices! (g, n - nv (g))
0 commit comments