@@ -60,7 +60,7 @@ for node in nodes(multilayerdigraph)
60
60
@test has_node (multilayerdigraph, node)
61
61
end
62
62
63
- # # Test MultilayerGraphs.add_node! and MultilayerGraphs.rem_node!
63
+ # Test MultilayerGraphs.add_node! and MultilayerGraphs.rem_node!
64
64
new_node = Node (" new_node" )
65
65
nv_prev = nv (multilayerdigraph)
66
66
ne_prev = ne (multilayerdigraph)
@@ -69,7 +69,7 @@ ne_prev = ne(multilayerdigraph)
69
69
@test has_node (multilayerdigraph, new_node)
70
70
@test MultilayerGraphs. rem_node! (multilayerdigraph, new_node)
71
71
@test ! has_node (multilayerdigraph, new_node)
72
- # ## Test that nothing changed
72
+ # Test that nothing changed
73
73
@test nv_prev == nv (multilayerdigraph)
74
74
@test ne_prev == ne (multilayerdigraph)
75
75
@@ -78,19 +78,17 @@ ne_prev = ne(multilayerdigraph)
78
78
nv (multilayerdigraph)
79
79
@test length (multilayerdigraph. fadjlist) == length (vertices (multilayerdigraph)) # nv_withmissing(multilayerdigraph)
80
80
81
- # # Test that all multilayer vertices are present
81
+ # Test that all multilayer vertices are present
82
82
for mv in vcat (mv_vertices .(all_layers_d)... )
83
83
@test has_vertex (multilayerdigraph, mv)
84
84
end
85
85
86
86
for mv in mv_vertices (multilayerdigraph)
87
- # if !(mv isa MissingVertex)
88
87
mv_inneighbors (multilayerdigraph, mv)
89
88
mv_outneighbors (multilayerdigraph, mv)
90
- # end
91
89
end
92
90
93
- # # Test add_vertex! and rem_vertex!
91
+ # Test add_vertex! and rem_vertex!
94
92
95
93
# Test edges
96
94
ne (multilayerdigraph)
@@ -116,7 +114,6 @@ wgt = weight_tensor(multilayerdigraph)
116
114
wgt = weight_tensor (multilayerdigraph)
117
115
@test wgt[rand_mv_1_weight, rand_mv_2_weight] == get_weight (multilayerdigraph, rand_mv_1_weight, rand_mv_2_weight) == _weight + 1
118
116
119
-
120
117
# # Test set_metadata!
121
118
_, rand_mv_1_meta, rand_mv_2_meta = _get_srcmv_dstmv_layer (layer_mdg)
122
119
# ## On vertices
@@ -135,7 +132,6 @@ mt = metadata_tensor(multilayerdigraph)
135
132
136
133
# Test Graphs.jl extra overrides
137
134
@test all (indegree (multilayerdigraph) .+ outdegree (multilayerdigraph) .== degree (multilayerdigraph))
138
-
139
135
@inferred (mean_degree (multilayerdigraph))
140
136
@inferred (degree_second_moment (multilayerdigraph))
141
137
@inferred (degree_variance (multilayerdigraph))
@@ -154,8 +150,6 @@ eig_centr_u, errs_u = eigenvector_centrality(multilayerdigraph; norm="n", tol=1e
154
150
155
151
modularity (multilayerdigraph, rand ([1 , 2 , 3 , 4 ], length (nodes (multilayerdigraph)), length (multilayerdigraph. layers)), )
156
152
157
- # get_graph_of_layers(multilayerdigraph)
158
-
159
153
wgt = weight_tensor (multilayerdigraph)
160
154
sam = supra_weight_matrix (multilayerdigraph)
161
155
for edge in collect (edges (multilayerdigraph. layer_swdg))
@@ -167,33 +161,19 @@ end
167
161
# Test that, given a 1-dimensional multilayerdigraph, we obtain the same metrics as we would by using Graphs.jl utilities on the one and only layer
168
162
# # unweighted and weighted case
169
163
for layer in all_layers_d
170
-
171
164
if ! (layer. graph isa SimpleValueGraphs. AbstractValGraph)
172
165
monolayergraph = MultilayerDiGraph ([layer])
173
-
174
166
@test length (edges (monolayergraph)) == length (edges (layer. graph))
175
-
176
167
@test eltype (monolayergraph) == eltype (layer. graph)
177
-
178
168
@test ne (monolayergraph) == ne (layer. graph)
179
-
180
169
@test length (nodes (monolayergraph)) == nv (layer. graph)
181
-
182
170
@test nv (monolayergraph) .== nv (layer. graph)
183
-
184
171
@test all (inneighbors .(Ref (monolayergraph), vertices (monolayergraph)) .== inneighbors .(Ref (layer. graph), vertices (layer. graph)))
185
-
186
-
187
172
@test all (indegree (monolayergraph) .== indegree (layer. graph))
188
-
189
173
@test all (outdegree (monolayergraph) .== outdegree (layer. graph))
190
-
191
174
@test all (degree (monolayergraph) .== degree (layer. graph))
192
-
193
175
@test_broken vec (eigenvector_centrality (monolayergraph; norm= " n" , tol= 1e-3 )[1 ]) ==
194
176
eigenvector_centrality (layer. graph)
195
-
196
-
197
177
tests = Bool[]
198
178
for i in 1 : 5
199
179
clustering = rand (
@@ -205,7 +185,6 @@ for layer in all_layers_d
205
185
)
206
186
end
207
187
@test_broken all (tests)
208
-
209
188
for edge in edges (layer)
210
189
@test has_edge (monolayergraph, edge)
211
190
end
0 commit comments