@@ -84,25 +84,25 @@ nothing # hide
84
84
85
85
defines a 4d image (3 space dimensions plus one time dimension) with
86
86
the specified name and physical pixel spacing for each coordinate.
87
- The ` AxisArrays ` package supports rich and efficient operations on such
87
+ The [ ` AxisArrays ` ] ( https://github.com/JuliaArrays/AxisArrays.jl ) package supports rich and efficient operations on such
88
88
arrays, and can be useful to keep track of not just pixel spacing but
89
89
the
90
90
[ orientation convention used for multidimensional images] ( http://www.grahamwideman.com/gw/brain/orientation/orientterms.htm ) .
91
91
92
92
JuliaImages interoperates smoothly with ` AxisArrays ` and many other
93
93
packages. As further examples,
94
94
95
- - the ` ImageMetadata ` package (incorporated into ` Images ` itself)
95
+ - the [ ` ImageMetadata ` ] ( https://github.com/JuliaImages/ImageMetadata.jl ) package (incorporated into ` Images ` itself)
96
96
allows you to "tag" images with custom metadata
97
97
98
- - the ` IndirectArrays ` package supports indexed (colormap) images
98
+ - the [ ` IndirectArrays ` ] ( https://github.com/JuliaArrays/IndirectArrays.jl ) package supports indexed (colormap) images
99
99
100
- - the ` MappedArrays ` package allows you to represent
100
+ - the [ ` MappedArrays ` ] ( https://github.com/JuliaArrays/MappedArrays.jl ) package allows you to represent
101
101
[ lazy] ( https://en.wikipedia.org/wiki/Lazy_evaluation )
102
102
value-transformations, facilitating work with images that may be too
103
103
large to store in memory at once
104
104
105
- - ` ImageTransformations ` allows you to encode rotations, shears,
105
+ - [ ` ImageTransformations ` ] ( https://github.com/JuliaImages/ImageTransformations.jl ) allows you to encode rotations, shears,
106
106
deformations, etc., either eagerly or lazily
107
107
108
108
It is very easy to define new array types in Julia--and consequently
@@ -138,10 +138,8 @@ img_rgb = rand(RGB, 2, 2)
138
138
img_lab = rand(Lab, 2, 2)
139
139
```
140
140
``` @example pixel
141
- mosaicview(cat(RGB.(img_gray), # hide
142
- RGB.(img_rgb), # hide
143
- RGB.(img_lab), dims=3), # hide
144
- RGB(1, 1, 1), # hide
141
+ mosaicview(RGB.(img_gray), RGB.(img_rgb), RGB.(img_lab), # hide
142
+ fillvalue=RGB(1, 1, 1), # hide
145
143
nrow=1, npad=2) # hide
146
144
```
147
145
@@ -206,7 +204,7 @@ img_rgb = colorview(RGB, img_CHW) # 2 * 2
206
204
adjacent storage in memory). For more details, please refer to the performance tip:
207
205
[ Access arrays in memory order, along columns] ( https://docs.julialang.org/en/v1/manual/performance-tips/#Access-arrays-in-memory-order,-along-columns-1 )
208
206
209
- You can use `permuteddimsview ` to "reinterpret" the orientation of a
207
+ You can use `PermutedDimsArray ` to "reinterpret" the orientation of a
210
208
chunk of memory without making a copy, or `permutedims` if you want a
211
209
copy.
212
210
@@ -263,11 +261,11 @@ img_n0f8_raw = rawview(img_n0f8)
263
261
float.(img_n0f8_raw)
264
262
```
265
263
266
- Conversions between the storage type without changing the color type are supported
267
- by the following functions:
264
+ Conversions between the storage type, i.e., the actual numeric type, without changing the color type
265
+ are supported by the following functions:
268
266
269
- * ` float32 ` , ` float64 `
270
- * ` n0f8 ` , ` n6f10 ` , ` n4f12 ` , ` n2f14 ` , ` n0f16 `
267
+ * [ ` float32 ` ] ( @ref ) , [ ` float64 ` ] ( @ref )
268
+ * [ ` n0f8 ` ] ( @ref ) , [ ` n6f10 ` ] ( @ref ) , [ ` n4f12 ` ] ( @ref ) , [ ` n2f14 ` ] ( @ref ) , [ ` n0f16 ` ] ( @ref )
271
269
272
270
``` @repl fixedpoint
273
271
img = rand(Gray{N0f8}, 2, 2)
0 commit comments